These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2641926)

  • 1. Does the endothelium play a role in flow-dependent constriction? A study in the isolated rabbit femoral artery.
    Sipkema P; van der Linden PJ; Hoogerwerf N; Westerhof N
    Blood Vessels; 1989; 26(6):368-76. PubMed ID: 2641926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelium function is protected by albumin and flow-induced constriction is independent of endothelium and tone in isolated rabbit femoral artery.
    Hoogerwerf N; Zijlstra EJ; van der Linden PJ; Westerhof N; Sipkema P
    J Vasc Res; 1992; 29(5):367-75. PubMed ID: 1420731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-driven diameter response in rat femoral arteries perfused in vitro.
    Porret CA; Stergiopulos N; Meister JJ
    Ann Biomed Eng; 1998; 26(4):526-33. PubMed ID: 9662145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholine stimulates release of endothelium-derived relaxing factor in coronary arteries of human organ donors.
    Blaise GA; Stewart DJ; Guérard MJ
    Can J Cardiol; 1993 Nov; 9(9):813-20. PubMed ID: 8281481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro diameter response of rat femoral artery to flow in the presence and absence of endothelium.
    Faber LL; Porret CA; Meister JJ; Stergiopulos N
    J Biomech; 2001 Aug; 34(8):1023-30. PubMed ID: 11448694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelium-dependent relaxation competes with alpha 1- and alpha 2-adrenergic constriction in the canine epicardial coronary microcirculation.
    Jones CJ; DeFily DV; Patterson JL; Chilian WM
    Circulation; 1993 Apr; 87(4):1264-74. PubMed ID: 8384938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries.
    Pohl U; Herlan K; Huang A; Bassenge E
    Am J Physiol; 1991 Dec; 261(6 Pt 2):H2016-23. PubMed ID: 1721502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-dependent hyperpolarization of smooth muscle cells in rabbit femoral arteries is not mediated by EDRF (nitric oxide).
    Huang AH; Busse R; Bassenge E
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Oct; 338(4):438-42. PubMed ID: 3266657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelium-derived relaxing factor and the effects of acetylcholine and histamine on resistance blood vessels.
    Bhardwaj R; Moore PK
    Br J Pharmacol; 1988 Nov; 95(3):835-43. PubMed ID: 3264734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myogenic autoregulation of flow may be inversely related to endothelium-derived relaxing factor activity.
    Griffith TM; Edwards DH
    Am J Physiol; 1990 Apr; 258(4 Pt 2):H1171-80. PubMed ID: 2331005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate of the myogenic response increases with the constriction level in rabbit femoral arteries.
    Sipkema P; Westerhof N; Hoogerwerf N
    Ann Biomed Eng; 1997; 25(2):278-85. PubMed ID: 9084833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylcholine-induced vasodilatation in rabbit hindlimb in vivo is not inhibited by analogues of L-arginine.
    Mügge A; Lopez JA; Piegors DJ; Breese KR; Heistad DD
    Am J Physiol; 1991 Jan; 260(1 Pt 2):H242-7. PubMed ID: 1704195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelium-derived relaxing factor is likely to modulate the tone of resistance arteries in rabbit hindlimb in vivo.
    Förstermann U; Dudel C; Frölich JC
    J Pharmacol Exp Ther; 1987 Dec; 243(3):1055-61. PubMed ID: 2447263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical conditioning decreases norepinephrine-induced vasoconstriction in rabbits. Possible roles of norepinephrine-evoked endothelium-derived relaxing factor.
    Chen HI; Li HT; Chen CC
    Circulation; 1994 Aug; 90(2):970-5. PubMed ID: 8044969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of endothelium sensitivity to shear stress in noradrenaline-induced constriction of feline femoral arterial bed under constant flow and constant pressure perfusions.
    Kartamyshev SP; Balashov SA; Melkumyants AM
    J Vasc Res; 2007; 44(1):1-10. PubMed ID: 17148940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous nitric oxide protects against platelet aggregation and cyclic flow variations in stenosed and endothelium-injured arteries.
    Yao SK; Ober JC; Krishnaswami A; Ferguson JJ; Anderson HV; Golino P; Buja LM; Willerson JT
    Circulation; 1992 Oct; 86(4):1302-9. PubMed ID: 1394936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of native and oxidized low-density lipoproteins on endothelium-dependent and endothelium-independent vasomotion.
    Galle J; Bassenge E
    Basic Res Cardiol; 1991; 86 Suppl 2():127-42. PubMed ID: 1953605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of volatile anesthetics on acetylcholine-induced relaxation in the rabbit mesenteric resistance artery.
    Akata T; Nakashima M; Kodama K; Boyle WA; Takahashi S
    Anesthesiology; 1995 Jan; 82(1):188-204. PubMed ID: 7832300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abluminal release and asymmetrical response of the rabbit arterial wall to endothelium-derived relaxing factor.
    Bassenge E; Busse R; Pohl U
    Circ Res; 1987 Nov; 61(5 Pt 2):II68-73. PubMed ID: 3117407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and functional importance of endothelium-derived relaxing factor (EDRF) and prostaglandins in the microcirculation.
    Förstermann U; Warmuth G; Dudel C; Alheid U
    Z Kardiol; 1989; 78 Suppl 6():85-91. PubMed ID: 2515674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.