These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26419727)

  • 1. Environmental roles of microbial amino acid racemases.
    Hernández SB; Cava F
    Environ Microbiol; 2016 Jun; 18(6):1673-85. PubMed ID: 26419727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of novel broad-spectrum amino acid racemases from Escherichia coli and Bacillus subtilis.
    Miyamoto T; Katane M; Saitoh Y; Sekine M; Homma H
    Amino Acids; 2017 Nov; 49(11):1885-1894. PubMed ID: 28894939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. D-Amino acid metabolism in bacteria.
    Miyamoto T; Homma H
    J Biochem; 2021 Sep; 170(1):5-13. PubMed ID: 33788945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting racemases.
    Femmer C; Bechtold M; Roberts TM; Panke S
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7423-36. PubMed ID: 27444433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional enzymes related to amino acid metabolism in bacteria.
    Miyamoto T
    Biosci Biotechnol Biochem; 2024 May; 88(6):585-593. PubMed ID: 38439669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptidoglycan remodeling by the coordinated action of multispecific enzymes.
    Alvarez L; Espaillat A; Hermoso JA; de Pedro MA; Cava F
    Microb Drug Resist; 2014 Jun; 20(3):190-8. PubMed ID: 24799190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The conundrum in enzymatic reactions related to biosynthesis of d-amino acids in bacteria.
    Pollegioni L; Molla G
    FEBS J; 2022 Oct; 289(19):5895-5898. PubMed ID: 35587531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging knowledge of regulatory roles of D-amino acids in bacteria.
    Cava F; Lam H; de Pedro MA; Waldor MK
    Cell Mol Life Sci; 2011 Mar; 68(5):817-31. PubMed ID: 21161322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the broad specificity of a new family of amino-acid racemases.
    Espaillat A; Carrasco-López C; Bernardo-García N; Pietrosemoli N; Otero LH; Álvarez L; de Pedro MA; Pazos F; Davis BM; Waldor MK; Hermoso JA; Cava F
    Acta Crystallogr D Biol Crystallogr; 2014 Jan; 70(Pt 1):79-90. PubMed ID: 24419381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-amino acids govern stationary phase cell wall remodeling in bacteria.
    Lam H; Oh DC; Cava F; Takacs CN; Clardy J; de Pedro MA; Waldor MK
    Science; 2009 Sep; 325(5947):1552-5. PubMed ID: 19762646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate racemase as a target for drug discovery.
    Fisher SL
    Microb Biotechnol; 2008 Sep; 1(5):345-60. PubMed ID: 21261855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evidence of d-glutamate racemase activity in the uncultivated bacterium Candidatus Saccharimonas aalborgensis.
    Peñalver M; Paradela A; Palacios-Cuéllar C; Pucciarelli MG; García-Del Portillo F
    Environ Microbiol; 2024 Apr; 26(4):e16621. PubMed ID: 38558504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. d-amino acids metabolism reflects the evolutionary origin of higher plants and their adaptation to the environment.
    Porras-Dominguez J; Lothier J; Limami AM; Tcherkez G
    Plant Cell Environ; 2024 May; 47(5):1503-1512. PubMed ID: 38251436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploitation of structural and regulatory diversity in glutamate racemases.
    Lundqvist T; Fisher SL; Kern G; Folmer RH; Xue Y; Newton DT; Keating TA; Alm RA; de Jonge BL
    Nature; 2007 Jun; 447(7146):817-22. PubMed ID: 17568739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptidoglycan plasticity in bacteria: stress-induced peptidoglycan editing by noncanonical D-amino acids.
    Horcajo P; de Pedro MA; Cava F
    Microb Drug Resist; 2012 Jun; 18(3):306-13. PubMed ID: 22443287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial synthesis of D-amino acids.
    Radkov AD; Moe LA
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5363-74. PubMed ID: 24752840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic mechanism and properties of pyridoxal 5'-phosphate independent racemases: how enzymes alter mismatched acidity and basicity.
    Fischer C; Ahn YC; Vederas JC
    Nat Prod Rep; 2019 Dec; 36(12):1687-1705. PubMed ID: 30994146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-Proline: Comment to "An overview on D-amino acids".
    König S; Marco H; Gäde G
    Amino Acids; 2018 Feb; 50(2):359-361. PubMed ID: 29128958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assay of amino acid racemases.
    Katane M; Sekine M; Homma H
    Methods Mol Biol; 2012; 794():367-79. PubMed ID: 21956577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Insights Into the Mechanisms and Biological Roles of D-Amino Acids in Complex Eco-Systems.
    Aliashkevich A; Alvarez L; Cava F
    Front Microbiol; 2018; 9():683. PubMed ID: 29681896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.