These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 26419810)
1. Pollen structure and development in Nymphaeales: insights into character evolution in an ancient angiosperm lineage. Taylor ML; Cooper RL; Schneider EL; Osborn JM Am J Bot; 2015 Oct; 102(10):1685-702. PubMed ID: 26419810 [TBL] [Abstract][Full Text] [Related]
2. Pollen ontogeny in Brasenia (Cabombaceae, Nymphaeales). Taylor ML; Osborn JM Am J Bot; 2006 Mar; 93(3):344-56. PubMed ID: 21646195 [TBL] [Abstract][Full Text] [Related]
3. Developmental and ultrastructural characters of the pollen grains and tapetum in species of Nymphaea subgenus Hydrocallis. Zini LM; Galati BG; Zarlavsky G; Ferrucci MS Protoplasma; 2017 Jul; 254(4):1777-1790. PubMed ID: 28083653 [TBL] [Abstract][Full Text] [Related]
4. Pollen and anther ontogeny in Cabomba caroliniana (Cabombaceae, Nymphaeales). Taylor ML; Gutman BL; Melrose NA; Ingraham AM; Schwartz JA; Osborn JM Am J Bot; 2008 Apr; 95(4):399-413. PubMed ID: 21632364 [TBL] [Abstract][Full Text] [Related]
5. Cretaceous flowers of Nymphaeaceae and implications for complex insect entrapment pollination mechanisms in early angiosperms. Gandolfo MA; Nixon KC; Crepet WL Proc Natl Acad Sci U S A; 2004 May; 101(21):8056-60. PubMed ID: 15148371 [TBL] [Abstract][Full Text] [Related]
6. Disentangling historical signal and pollinator selection on the micromorphology of flowers: an example from the floral epidermis of the Nymphaeaceae. Coiro M; Barone Lumaga MR Plant Biol (Stuttg); 2018 Sep; 20(5):902-915. PubMed ID: 29869401 [TBL] [Abstract][Full Text] [Related]
7. Comparative ovule and megagametophyte development in Hydatellaceae and water lilies reveal a mosaic of features among the earliest angiosperms. Rudall PJ; Remizowa MV; Beer AS; Bradshaw E; Stevenson DW; Macfarlane TD; Tuckett RE; Yadav SR; Sokoloff DD Ann Bot; 2008 May; 101(7):941-56. PubMed ID: 18378513 [TBL] [Abstract][Full Text] [Related]
8. Phylogenetic reconstruction in the order Nymphaeales: ITS2 secondary structure analysis and in silico testing of maturase k (matK) as a potential marker for DNA bar coding. Biswal DK; Debnath M; Kumar S; Tandon P BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S26. PubMed ID: 23282079 [TBL] [Abstract][Full Text] [Related]
9. Comparative exine development from the post-tetrad stage in the early-divergent lineages of Ranunculales: the genera Euptelea and Pteridophyllum. Pérez-Gutiérrez MA; Fernández MC; Salinas-Bonillo MJ; Suárez-Santiago VN; Ben-Menni Schuler S; Romero-García AT J Plant Res; 2016 Nov; 129(6):1085-1096. PubMed ID: 27590132 [TBL] [Abstract][Full Text] [Related]
10. Pollen and anther development in Nelumbo (Nelumbonaceae). Kreunen SS; Osborn JM Am J Bot; 1999 Dec; 86(12):1662-76. PubMed ID: 10602759 [TBL] [Abstract][Full Text] [Related]
11. Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies). Pellicer J; Kelly LJ; Magdalena C; Leitch IJ Genome; 2013 Aug; 56(8):437-49. PubMed ID: 24168627 [TBL] [Abstract][Full Text] [Related]
12. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Friis EM; Pedersen KR; Crane PR Nature; 2001 Mar; 410(6826):357-60. PubMed ID: 11268209 [TBL] [Abstract][Full Text] [Related]
13. Pollen tube development in two species of Trithuria (Hydatellaceae) with contrasting breeding systems. Taylor ML; Williams JH Sex Plant Reprod; 2012 Jun; 25(2):83-96. PubMed ID: 22367232 [TBL] [Abstract][Full Text] [Related]
14. Floral biology and ovule and seed ontogeny of Nymphaea thermarum, a water lily at the brink of extinction with potential as a model system for basal angiosperms. Povilus RA; Losada JM; Friedman WE Ann Bot; 2015 Feb; 115(2):211-26. PubMed ID: 25497514 [TBL] [Abstract][Full Text] [Related]
15. Hydatellaceae are water lilies with gymnospermous tendencies. Friedman WE Nature; 2008 May; 453(7191):94-7. PubMed ID: 18354395 [TBL] [Abstract][Full Text] [Related]
16. Pollen structure and function in caesalpinioid legumes. Banks H; Rudall PJ Am J Bot; 2016 Mar; 103(3):423-36. PubMed ID: 26944352 [TBL] [Abstract][Full Text] [Related]
17. Molecular phylogenetics of Hydatellaceae (Nymphaeales): sexual-system homoplasy and a new sectional classification. Iles WJ; Rudall PJ; Sokoloff DD; Remizowa MV; Macfarlane TD; Logacheva MD; Graham SW Am J Bot; 2012 Apr; 99(4):663-76. PubMed ID: 22473977 [TBL] [Abstract][Full Text] [Related]
18. Intergeneric Relationships within the Early-Diverging Angiosperm Family Nymphaeaceae Based on Chloroplast Phylogenomics. He D; Gichira AW; Li Z; Nzei JM; Guo Y; Wang Q; Chen J Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30486510 [TBL] [Abstract][Full Text] [Related]
19. Ultrastructure of microsporogenesis and microgametogenesis in Brachypodium distachyon. Sharma A; Singh MB; Bhalla PL Protoplasma; 2015 Nov; 252(6):1575-86. PubMed ID: 25772681 [TBL] [Abstract][Full Text] [Related]
20. Unique stigmatic hairs and pollen-tube growth within the stigmatic cell wall in the early-divergent angiosperm family Hydatellaceae. Prychid CJ; Sokoloff DD; Remizowa MV; Tuckett RE; Yadav SR; Rudall PJ Ann Bot; 2011 Sep; 108(4):599-608. PubMed ID: 21320877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]