BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 26419826)

  • 1. Recovering the superficial microvascular pattern via diffuse reflection imaging: phantom validation.
    Chen C; Florian K; Rajesh K; Max R; Christian K; Florian S; Michael S
    Biomed Eng Online; 2015 Sep; 14():87. PubMed ID: 26419826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PV-MBLL algorithm for extraction of absolute tissue oxygenation information by diffuse optical spectroscopy.
    Bai J; Zhu Q; Liu Y; Zhou Y; Shi T; Gui Z; Shang Y
    Comput Methods Programs Biomed; 2020 Sep; 193():105456. PubMed ID: 32305645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid hemoglobin-polymer phantoms for evaluation of biophotonic systems.
    Jang H; Pfefer TJ; Chen Y
    Opt Lett; 2015 Sep; 40(18):4321-4. PubMed ID: 26371926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study.
    Chen S; Lin X; Zhu C; Liu Q
    J Biomed Opt; 2014 Dec; 19(12):127001. PubMed ID: 25467524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of a turbid optofluidic phantom device with tunable μa and μ's to simulate cutaneous vascular perfusion.
    Chen C; Ahmed M; Häfner T; Klämpfl F; Stelzle F; Schmidt M
    Sci Rep; 2016 Jul; 6():30567. PubMed ID: 27457535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High resolution imaging of acne lesion development and scarring in human facial skin using OCT-based microangiography.
    Baran U; Li Y; Choi WJ; Kalkan G; Wang RK
    Lasers Surg Med; 2015 Mar; 47(3):231-8. PubMed ID: 25740313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micron resolution, high-fidelity three-dimensional vascular optical imaging phantoms.
    Little CD; Poduval RK; Caulfield R; Noimark S; Colchester RJ; Loder CD; Tiwari MK; Rakhit RD; Papakonstantinou I; Desjardins AE
    J Biomed Opt; 2019 Feb; 24(2):1-4. PubMed ID: 30770678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of a skin equivalent phantom with interior micron-scale vessel structures for optical imaging experiments.
    Chen C; Klämpfl F; Knipfer C; Riemann M; Kanawade R; Stelzle F; Schmidt M
    Biomed Opt Express; 2014 Sep; 5(9):3140-9. PubMed ID: 25401027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards monitoring dysplastic progression in the oral cavity using a hybrid fiber-bundle imaging and spectroscopy probe.
    Greening GJ; James HM; Dierks MK; Vongkittiargorn N; Osterholm SM; Rajaram N; Muldoon TJ
    Sci Rep; 2016 May; 6():26734. PubMed ID: 27220821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology.
    Liu G; Huang K; Jia Q; Liu S; Shen S; Li J; Dong E; Lemaillet P; Allen DW; Xu RX
    Appl Opt; 2018 Aug; 57(23):6772-6780. PubMed ID: 30129625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized speckle variance OCT imaging of microvasculature.
    Mariampillai A; Leung MK; Jarvi M; Standish BA; Lee K; Wilson BC; Vitkin A; Yang VX
    Opt Lett; 2010 Apr; 35(8):1257-9. PubMed ID: 20410985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of optical imaging with a small animal irradiator.
    Weersink RA; Ansell S; Wang A; Wilson G; Shah D; Lindsay PE; Jaffray DA
    Med Phys; 2014 Oct; 41(10):102701. PubMed ID: 25281980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying tissue microvasculature with speckle variance optical coherence tomography.
    Conroy L; DaCosta RS; Vitkin IA
    Opt Lett; 2012 Aug; 37(15):3180-2. PubMed ID: 22859125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel method for early signs of clinical shock detection by monitoring blood capillary/vessel spatial pattern.
    Kanawade R; Klämpfl F; Riemann M; Knipfer C; Tangermann-Gerk K; Schmidt M; Stelzle F
    J Biophotonics; 2014 Oct; 7(10):841-9. PubMed ID: 23843326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography.
    Makita S; Jaillon F; Yamanari M; Miura M; Yasuno Y
    Opt Express; 2011 Jan; 19(2):1271-83. PubMed ID: 21263668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography.
    Zafar H; Enfield J; O'Connell ML; Ramsay B; Lynch M; Leahy MJ
    Skin Res Technol; 2014 May; 20(2):141-6. PubMed ID: 23869903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo tissue injury mapping using optical coherence tomography based methods.
    Baran U; Li Y; Wang RK
    Appl Opt; 2015 Jul; 54(21):6448-53. PubMed ID: 26367827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beer-Lambert law for optical tissue diagnostics: current state of the art and the main limitations.
    Oshina I; Spigulis J
    J Biomed Opt; 2021 Oct; 26(10):. PubMed ID: 34713647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multispectral transillumination imaging of skin lesions for oxygenated and deoxygenated hemoglobin measurement.
    D'Alessandro B; Dhawan AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6637-40. PubMed ID: 21096731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom.
    Gade J; Palmqvist D; Plomgård P; Greisen G
    Phys Med Biol; 2006 Jan; 51(1):121-36. PubMed ID: 16357435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.