BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26419860)

  • 1. Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures.
    Zhang B; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2015 Oct; 29(10):937-50. PubMed ID: 26419860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of chemical space networks on the basis of Tversky similarity.
    Wu M; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2016 Jan; 30(1):1-12. PubMed ID: 26695392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of bioactive chemical space networks generated using substructure- and fingerprint-based measures of molecular similarity.
    Zhang B; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2015 Jul; 29(7):595-608. PubMed ID: 26049785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and characterization of chemical space networks for different compound data sets.
    Zwierzyna M; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2015 Feb; 29(2):113-25. PubMed ID: 25465052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracing compound pathways using chemical space networks.
    Kunimoto R; Vogt M; Bajorath J
    Medchemcomm; 2017 Feb; 8(2):376-384. PubMed ID: 30108753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of chemical space networks incorporating compound distance relationships.
    de la Vega de León A; Bajorath J
    F1000Res; 2016; 5():. PubMed ID: 28184279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lessons learned from the design of chemical space networks and opportunities for new applications.
    Vogt M; Stumpfe D; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2016 Mar; 30(3):191-208. PubMed ID: 26945865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing chemical space networks with RDKit and NetworkX.
    Scalfani VF; Patel VD; Fernandez AM
    J Cheminform; 2022 Dec; 14(1):87. PubMed ID: 36578091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical space visualization: transforming multidimensional chemical spaces into similarity-based molecular networks.
    de la Vega de León A; Bajorath J
    Future Med Chem; 2016 Sep; 8(14):1769-78. PubMed ID: 27572425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From bird's eye views to molecular communities: two-layered visualization of structure-activity relationships in large compound data sets.
    Kayastha S; Kunimoto R; Horvath D; Varnek A; Bajorath J
    J Comput Aided Mol Des; 2017 Nov; 31(11):961-977. PubMed ID: 28986673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Euclidean chemical spaces from molecular fingerprints: Hamming distance and Hempel's ravens.
    Martin E; Cao E
    J Comput Aided Mol Des; 2015 May; 29(5):387-95. PubMed ID: 25475496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a three-dimensional multitarget activity landscape.
    de la Vega de León A; Bajorath J
    J Chem Inf Model; 2012 Nov; 52(11):2876-83. PubMed ID: 23113585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Context-sensitive network-based disease genetics prediction and its implications in drug discovery.
    Chen Y; Xu R
    Bioinformatics; 2017 Apr; 33(7):1031-1039. PubMed ID: 28062449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erratum to: design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures.
    Zhang B; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2015 Nov; 29(11):1071-2. PubMed ID: 26549553
    [No Abstract]   [Full Text] [Related]  

  • 15. MMP-Cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs.
    Hu X; Hu Y; Vogt M; Stumpfe D; Bajorath J
    J Chem Inf Model; 2012 May; 52(5):1138-45. PubMed ID: 22489665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Build-up algorithm for atomic correspondence between chemical structures.
    Kawabata T
    J Chem Inf Model; 2011 Aug; 51(8):1775-87. PubMed ID: 21736325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating Pharmacological Similarity by Charting Chemical Space.
    Buonfiglio R; Engkvist O; Várkonyi P; Henz A; Vikeved E; Backlund A; Kogej T
    J Chem Inf Model; 2015 Nov; 55(11):2375-90. PubMed ID: 26484706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical database mining through entropy-based molecular similarity assessment of randomly generated structural fragment populations.
    Batista J; Bajorath J
    J Chem Inf Model; 2007; 47(1):59-68. PubMed ID: 17238249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Property eXplorer: a novel approach to visualizing SAR using tree-maps and heatmaps.
    Kibbey C; Calvet A
    J Chem Inf Model; 2005; 45(2):523-32. PubMed ID: 15807518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum common substructure-based Tversky index: an asymmetric hybrid similarity measure.
    Kunimoto R; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2016 Jul; 30(7):523-31. PubMed ID: 27515428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.