These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26419973)

  • 1. First-principles study of terpyrrole as a potential hydrogen cyanide sensor: DFT calculations.
    Shokuhi Rad A; Zardoost MR; Abedini E
    J Mol Model; 2015 Oct; 21(10):273. PubMed ID: 26419973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density-functional study of hydrogen cyanide adsorption on silicene nanoribbons.
    Walia GK; Randhawa DKK
    J Mol Model; 2018 Aug; 24(9):242. PubMed ID: 30121785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The polythiophene molecular segment as a sensor model for H2O, HCN, NH3, SO3, and H2S: a density functional theory study.
    Shokuhi Rad A; Esfahanian M; Ganjian E; Tayebi HA; Novir SB
    J Mol Model; 2016 Jun; 22(6):127. PubMed ID: 27178416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substituent effects on noncovalent bonds: complexes of ionized benzene derivatives with hydrogen cyanide.
    Attah IK; Hamid AM; Meot-Ner Mautner M; El-Shall MS; Aziz SG; Alyoubi AO
    J Phys Chem A; 2013 Oct; 117(41):10588-97. PubMed ID: 24024653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide.
    Wang R; Zhang D; Liu Y; Liu C
    Nanotechnology; 2009 Dec; 20(50):505704. PubMed ID: 19923655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT coupled with NEGF study of ultra-sensitive HCN and HNC gases detection and distinct I-V response based on phosphorene.
    Pang J; Yang Q; Ma X; Wang L; Tan C; Xiong D; Ye H; Chen X
    Phys Chem Chem Phys; 2017 Nov; 19(45):30852-30860. PubMed ID: 29134990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of low energy charge transfer transitions in (terpyridine)(bipyridine)ruthenium(II) complexes and their cyanide-bridged bi- and tri-metallic analogues.
    Tsai CN; Allard MM; Lord RL; Luo DW; Chen YJ; Schlegel HB; Endicott JF
    Inorg Chem; 2011 Dec; 50(23):11965-77. PubMed ID: 22066683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional theory evaluation of pristine and BN-doped biphenylene nanosheets to detect HCN.
    Esfandiarpour R; Hosseini MR; Hadipour NL; Bahrami A
    J Mol Model; 2019 May; 25(6):163. PubMed ID: 31098854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent Triazine Framework C
    Hammud HH; Yar M; Bayach I; Ayub K
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36986015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide.
    Beheshtian J; Peyghan AA; Bagheri Z
    J Mol Model; 2013 Jun; 19(6):2197-203. PubMed ID: 23354475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles insights into interaction of CO, NO, and HCN with Ag8.
    Torbatian Z; Hashemifar SJ; Akbarzadeh H
    J Chem Phys; 2014 Feb; 140(8):084314. PubMed ID: 24588176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of polythiophene to methanol vapor detection: an ab initio study.
    Shokuhi Rad A
    J Mol Model; 2015 Nov; 21(11):285. PubMed ID: 26472329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring adsorption mechanism of hydrogen cyanide and cyanogen chloride molecules on arsenene nanoribbon from first-principles.
    Bhuvaneswari R; Nagarajan V; Chandiramouli R
    J Mol Graph Model; 2019 Jun; 89():13-21. PubMed ID: 30844605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unconventional CH(δ+)···N hydrogen bonding interactions in the stepwise solvation of the naphthalene radical cation by hydrogen cyanide and acetonitrile molecules.
    Platt SP; Attah IK; El-Shall MS; Hilal R; Elroby SA; Aziz SG
    Phys Chem Chem Phys; 2016 Jan; 18(4):2580-90. PubMed ID: 26700190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmark, DFT assessments, cooperativity, and energy decomposition analysis of the hydrogen bonds in HCN/HNC oligomeric complexes.
    de Oliveira PM; Silva JA; Longo RL
    J Mol Model; 2017 Feb; 23(2):56. PubMed ID: 28161784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A density functional theory study of hydrogen adsorption on Be-, Mg-, and Ca-exchanged LTL zeolite clusters.
    Fellah MF
    J Mol Model; 2017 Jun; 23(6):184. PubMed ID: 28488191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective adsorption of A-series chemical warfare agents on graphdiyne nanoflake: a DFT study.
    Sajid H; Khan S; Ayub K; Mahmood T
    J Mol Model; 2021 Apr; 27(4):117. PubMed ID: 33796926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling CO adsorption on Cu surfaces: new insights from molecular orbital principles.
    Gameel KM; Sharafeldin IM; Abourayya AU; Biby AH; Allam NK
    Phys Chem Chem Phys; 2018 Oct; 20(40):25892-25900. PubMed ID: 30289135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT studies of acrolein molecule adsorption on pristine and Al-doped graphenes.
    Rastegar SF; Hadipour NL; Tabar MB; Soleymanabadi H
    J Mol Model; 2013 Sep; 19(9):3733-40. PubMed ID: 23793719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of naphthalene and quinoline on Pt, Pd and Rh: a DFT study.
    Santarossa G; Iannuzzi M; Vargas A; Baiker A
    Chemphyschem; 2008 Feb; 9(3):401-13. PubMed ID: 18236490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.