These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2642013)

  • 1. Defasciculation as a neuronal pathfinding strategy: involvement of a specific glycoprotein.
    Zipser B; Morell R; Bajt ML
    Neuron; 1989 Nov; 3(5):621-30. PubMed ID: 2642013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mannose-specific recognition mediates the defasciculation of axons in the leech CNS.
    Zipser B; Cole RN
    J Neurosci; 1991 Nov; 11(11):3471-80. PubMed ID: 1658251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mannose-specific recognition mediates two aspects of synaptic growth of leech sensory afferents: collateral branching and proliferation of synaptic vesicle clusters.
    Tai MH; Zipser B
    Dev Biol; 1998 Sep; 201(2):154-66. PubMed ID: 9740656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of surface glycoproteins early in leech neural development.
    McGlade-McCulloh E; Muller KJ; Zipser B
    J Comp Neurol; 1990 Sep; 299(1):123-31. PubMed ID: 1698836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of the inhibition of axonal defasciculation and arborization mediated by carbohydrate markers in the embryonic leech.
    Song J; Zipser B
    Dev Biol; 1995 Apr; 168(2):319-31. PubMed ID: 7729572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific pathway selection by the early projections of individual peripheral sensory neurons in the embryonic medicinal leech.
    Jellies J; Johansen K; Johansen J
    J Neurobiol; 1994 Oct; 25(10):1187-99. PubMed ID: 7815053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tract formation and axon fasciculation of molecularly distinct peripheral neuron subpopulations during leech embryogenesis.
    Johansen KM; Kopp DM; Jellies J; Johansen J
    Neuron; 1992 Mar; 8(3):559-72. PubMed ID: 1550678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The specificity of 130-kDa leech sensory afferent proteins is encoded by their carbohydrate epitopes.
    Bajt ML; Cole RN; Zipser B
    J Neurochem; 1990 Dec; 55(6):2117-25. PubMed ID: 1700074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential steps in synaptic targeting of sensory afferents are mediated by constitutive and developmentally regulated glycosylations of CAMs.
    Tai MH; Zipser B
    Dev Biol; 1999 Oct; 214(2):258-76. PubMed ID: 10525333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic conservation of the cell-type-specific Lan3-2 glycoepitope in Caenorhabditis elegans.
    Vansteenhouse HC; Horton ZA; O'Hagan R; Tai MH; Zipser B
    Dev Genes Evol; 2010 Sep; 220(3-4):77-87. PubMed ID: 20563596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting of neuronal subsets mediated by their sequentially expressed carbohydrate markers.
    Song J; Zipser B
    Neuron; 1995 Mar; 14(3):537-47. PubMed ID: 7695900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrate epitopes involved in neural cell recognition are conserved between vertebrates and leech.
    Bajt ML; Schmitz B; Schachner M; Zipser B
    J Neurosci Res; 1990 Nov; 27(3):276-85. PubMed ID: 1711124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective pathway choice of a single central axonal fascicle by a subset of peripheral neurons during leech development.
    Briggs KK; Johansen KM; Johansen J
    Dev Biol; 1993 Aug; 158(2):380-9. PubMed ID: 8344457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leech photoreceptors project their galectin-containing processes into the optic neuropils where they contact AP cells.
    Tai MH; Rheuben MB; Autio DM; Zipser B
    J Comp Neurol; 1996 Jul; 371(2):235-48. PubMed ID: 8835729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral neurons depend on CNS-derived guidance cues for proper navigation during leech development.
    Jellies J; Johansen KM; Johansen J
    Dev Biol; 1995 Oct; 171(2):471-82. PubMed ID: 7556929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normally unused positional cues guide ectopic afferents in the leech CNS.
    Passani MB; Peinado A; Engelman H; Baptista CA; Macagno ER
    J Neurosci; 1991 Dec; 11(12):3868-76. PubMed ID: 1744695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo dynamics of CNS sensory arbor formation: a time-lapse study in the embryonic leech.
    Baker MW; Kauffman B; Macagno ER; Zipser B
    J Neurobiol; 2003 Jul; 56(1):41-53. PubMed ID: 12767031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of carbohydrate epitopes among disjoint subsets of leech sensory afferent neurons.
    Zipser K; Erhardt M; Song J; Cole RN; Zipser B
    J Neurosci; 1994 Jul; 14(7):4481-93. PubMed ID: 7517997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial formation and secondary condensation of nerve pathways in the medicinal leech.
    Jellies J; Kopp DM; Johansen KM; Johansen J
    J Comp Neurol; 1996 Sep; 373(1):1-10. PubMed ID: 8876458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A group of related surface glycoproteins distinguish sets and subsets of sensory afferents in the leech nervous system.
    Peinado A; Macagno ER; Zipser B
    Brain Res; 1987 May; 410(2):335-9. PubMed ID: 3297253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.