BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 26420444)

  • 1. Experimental measurement and Monte Carlo assessment of Argon-41 production in a PET cyclotron facility.
    Infantino A; Valtieri L; Cicoria G; Pancaldi D; Mostacci D; Marengo M
    Phys Med; 2015 Dec; 31(8):991-996. PubMed ID: 26420444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the neutron dose field around a biomedical cyclotron: FLUKA simulation and experimental measurements.
    Infantino A; Cicoria G; Lucconi G; Pancaldi D; Vichi S; Zagni F; Mostacci D; Marengo M
    Phys Med; 2016 Dec; 32(12):1602-1608. PubMed ID: 27919623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation Protection Studies for Medical Particle Accelerators using Fluka Monte Carlo Code.
    Infantino A; Cicoria G; Lucconi G; Pancaldi D; Vichi S; Zagni F; Mostacci D; Marengo M
    Radiat Prot Dosimetry; 2017 Apr; 173(1-3):185-191. PubMed ID: 27886990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutron spectra due (13)N production in a PET cyclotron.
    Benavente JA; Vega-Carrillo HR; Lacerda MA; Fonseca TC; Faria FP; da Silva TA
    Appl Radiat Isot; 2015 May; 99():20-4. PubMed ID: 25699664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the neutron field in the vicinity of an unshielded PET cyclotron.
    Méndez R; Iñiguez MP; Martí-Climent JM; Peñuelas I; Vega-Carrillo HR; Barquero R
    Phys Med Biol; 2005 Nov; 50(21):5141-52. PubMed ID: 16237246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source terms, shielding calculations and soil activation for a medical cyclotron.
    Konheiser J; Naumann B; Ferrari A; Brachem C; Müller SE
    J Radiol Prot; 2016 Dec; 36(4):819-831. PubMed ID: 27725341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton range monitoring with in-beam PET: Monte Carlo activity predictions and comparison with cyclotron data.
    Kraan AC; Battistoni G; Belcari N; Camarlinghi N; Cirrone GA; Cuttone G; Ferretti S; Ferrari A; Pirrone G; Romano F; Sala P; Sportelli G; Straub K; Tramontana A; Del Guerra A; Rosso V
    Phys Med; 2014 Jul; 30(5):559-69. PubMed ID: 24786664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of a Cyclotron Target for the Production of 11C with Geant4.
    Chiappiniello A; Zagni F; Infantino A; Vichi S; Cicoria G; Morigi MP; Marengo M
    Curr Radiopharm; 2018; 11(2):92-99. PubMed ID: 29651945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of (89)Zr production using the Monte Carlo code FLUKA.
    Infantino A; Cicoria G; Pancaldi D; Ciarmatori A; Boschi S; Fanti S; Marengo M; Mostacci D
    Appl Radiat Isot; 2011 Aug; 69(8):1134-7. PubMed ID: 21146416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Activation Isotopes in a CS-30 Cyclotron Vault.
    Abuhoza AA; Kassim HA; Alghamdi AA; Alrumayan FM; Arib M; Aljammaz IJ; ALQahtani M
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shielding for a cyclotron used for medical isotope production in China.
    Pevey R; Miller LF; Marshall BJ; Townsend LW; Alvord B
    Radiat Prot Dosimetry; 2005; 115(1-4):415-9. PubMed ID: 16381758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo neutron doses estimations inside a PET cyclotron vault room.
    Barquero R; Méndez R; Martí-Climent JM; Quincoces G
    Radiat Prot Dosimetry; 2007; 126(1-4):477-81. PubMed ID: 17504752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of (41)Ar production in 0.1-1.1.0-GeV proton accelerator vaults using FLUKA Monte Carlo code.
    Biju K; Sunil C; Sarkar PK
    Radiat Prot Dosimetry; 2013 Dec; 157(3):437-41. PubMed ID: 23754833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GEANT4 simulation of cyclotron radioisotope production in a solid target.
    Poignant F; Penfold S; Asp J; Takhar P; Jackson P
    Phys Med; 2016 May; 32(5):728-34. PubMed ID: 27155937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decommissioning of a Medical Cyclotron Vault: The Case Study of the National Cancer Institute of Milano.
    Pola A; Bortot D; Pasquato S; Mazzucconi D; Chiesa C; Zanellati F; Brusa A
    Health Phys; 2024 Aug; 127(2):276-286. PubMed ID: 38394553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling cyclotron-based production of radioisotopes via TOPAS.
    Broder BA; Freifelder R; Kucharski A; Chen CT
    Phys Med Biol; 2022 Dec; 68(1):. PubMed ID: 36571231
    [No Abstract]   [Full Text] [Related]  

  • 18. Source term calculation and validation for
    Konheiser J; Müller SE; Magin A; Naumann B; Ferrari A
    J Radiol Prot; 2019 Sep; 39(3):906-919. PubMed ID: 31216517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective production of ⁶⁵Zn with a PET cyclotron.
    Lucconi G; Cicoria G; Pancaldi D; Malizia C; Marengo M
    Appl Radiat Isot; 2012 Aug; 70(8):1590-4. PubMed ID: 22732395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decommissioning procedures for an 11 MeV self-shielded medical cyclotron after 16 years of working time.
    Calandrino R; del Vecchio A; Savi A; Todde S; Griffoni V; Brambilla S; Parisi R; Simone G; Fazio F
    Health Phys; 2006 Jun; 90(6):588-96. PubMed ID: 16691108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.