These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 26420515)

  • 1. Near-Infrared Phosphorus-Substituted Rhodamine with Emission Wavelength above 700 nm for Bioimaging.
    Chai X; Cui X; Wang B; Yang F; Cai Y; Wu Q; Wang T
    Chemistry; 2015 Nov; 21(47):16754-8. PubMed ID: 26420515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer.
    Koide Y; Urano Y; Hanaoka K; Terai T; Nagano T
    ACS Chem Biol; 2011 Jun; 6(6):600-8. PubMed ID: 21375253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes.
    Sun YQ; Liu J; Lv X; Liu Y; Zhao Y; Guo W
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7634-6. PubMed ID: 22674799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom.
    Fu M; Xiao Y; Qian X; Zhao D; Xu Y
    Chem Commun (Camb); 2008 Apr; (15):1780-2. PubMed ID: 18379691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of NIR fluorescent dyes based on Si-rhodamine for in vivo imaging.
    Koide Y; Urano Y; Hanaoka K; Piao W; Kusakabe M; Saito N; Terai T; Okabe T; Nagano T
    J Am Chem Soc; 2012 Mar; 134(11):5029-31. PubMed ID: 22390359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analogs of Changsha near-infrared dyes with large Stokes Shifts for bioimaging.
    Yuan L; Lin W; Chen H
    Biomaterials; 2013 Dec; 34(37):9566-71. PubMed ID: 24054843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spirolactonized Si-rhodamine: a novel NIR fluorophore utilized as a platform to construct Si-rhodamine-based probes.
    Wang T; Zhao QJ; Hu HG; Yu SC; Liu X; Liu L; Wu QY
    Chem Commun (Camb); 2012 Sep; 48(70):8781-3. PubMed ID: 22836301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unique rectilinearly π-extended rhodamine dye with large Stokes shift and near-infrared fluorescence for bioimaging.
    Liu C; Jiao X; Wang Q; Huang K; He S; Zhao L; Zeng X
    Chem Commun (Camb); 2017 Sep; 53(77):10727-10730. PubMed ID: 28920595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfone-Rhodamines: A New Class of Near-Infrared Fluorescent Dyes for Bioimaging.
    Liu J; Sun YQ; Zhang H; Shi H; Shi Y; Guo W
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):22953-62. PubMed ID: 27548811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon-substituted xanthene dyes and their applications in bioimaging.
    Kushida Y; Nagano T; Hanaoka K
    Analyst; 2015 Feb; 140(3):685-95. PubMed ID: 25380094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon Substitution in Oxazine Dyes Yields Near-Infrared Azasiline Fluorophores That Absorb and Emit beyond 700 nm.
    Choi A; Miller SC
    Org Lett; 2018 Aug; 20(15):4482-4485. PubMed ID: 30014702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rhodamine-based fluorescent probe for detecting Hg(2+) in a fully aqueous environment.
    Chen X; Meng X; Wang S; Cai Y; Wu Y; Feng Y; Zhu M; Guo Q
    Dalton Trans; 2013 Oct; 42(41):14819-25. PubMed ID: 23986178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a series of near-infrared dark quenchers based on Si-rhodamines and their application to fluorescent probes.
    Myochin T; Hanaoka K; Iwaki S; Ueno T; Komatsu T; Terai T; Nagano T; Urano Y
    J Am Chem Soc; 2015 Apr; 137(14):4759-65. PubMed ID: 25764154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescent probe of N'-formyl-rhodamine B hydrazide: structure and spectral properties of protonation behaviour.
    Wang J; Yang Q; Song H; Zhang W
    Org Biomol Chem; 2012 Oct; 10(38):7677-80. PubMed ID: 22915240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of Novel Dark Quenchers and Their Application to Imaging Probes].
    Hanaoka K
    Yakugaku Zasshi; 2019; 139(2):277-283. PubMed ID: 30713240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric Si-rhodamine scaffolds: rational design of pH-durable protease-activated NIR probes in vivo.
    Li M; Wang C; Wang T; Fan M; Wang N; Ma D; Hu T; Cui X
    Chem Commun (Camb); 2020 Feb; 56(16):2455-2458. PubMed ID: 31996872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rhodamine-based "turn-on" fluorescent probe for Fe3+ in aqueous solution.
    Ji S; Meng X; Ye W; Feng Y; Sheng H; Cai Y; Liu J; Zhu X; Guo Q
    Dalton Trans; 2014 Jan; 43(4):1583-8. PubMed ID: 24217856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Rhodamine Fluorophores in the Visible/NIR Region for Biological Imaging.
    Wang L; Du W; Hu Z; Uvdal K; Li L; Huang W
    Angew Chem Int Ed Engl; 2019 Oct; 58(40):14026-14043. PubMed ID: 30843646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiroboronate Si-rhodamine as a near-infrared probe for imaging lysosomes based on the reversible ring-opening process.
    Zhu W; Chai X; Wang B; Zou Y; Wang T; Meng Q; Wu Q
    Chem Commun (Camb); 2015 Jun; 51(47):9608-11. PubMed ID: 25939985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A General Strategy for the Construction of NIR-emitting Si-rhodamines and Their Application for Mitochondrial Temperature Visualization.
    Tang W; Gao H; Li J; Wang X; Zhou Z; Gai L; Feng XJ; Tian J; Lu H; Guo Z
    Chem Asian J; 2020 Sep; 15(17):2724-2730. PubMed ID: 32666700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.