These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 26420829)

  • 1. GeoPCA: a new tool for multivariate analysis of dihedral angles based on principal component geodesics.
    Sargsyan K; Wright J; Lim C
    Nucleic Acids Res; 2015 Dec; 43(21):10571-2. PubMed ID: 26420829
    [No Abstract]   [Full Text] [Related]  

  • 2. GeoPCA: a new tool for multivariate analysis of dihedral angles based on principal component geodesics.
    Sargsyan K; Wright J; Lim C
    Nucleic Acids Res; 2012 Feb; 40(3):e25. PubMed ID: 22139913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-energy landscape of RNA hairpins constructed via dihedral angle principal component analysis.
    Riccardi L; Nguyen PH; Stock G
    J Phys Chem B; 2009 Dec; 113(52):16660-8. PubMed ID: 20028141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dihedral angle principal component analysis of molecular dynamics simulations.
    Altis A; Nguyen PH; Hegger R; Stock G
    J Chem Phys; 2007 Jun; 126(24):244111. PubMed ID: 17614541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latent dynamics of a protein molecule observed in dihedral angle space.
    Omori S; Fuchigami S; Ikeguchi M; Kidera A
    J Chem Phys; 2010 Mar; 132(11):115103. PubMed ID: 20331318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing the free-energy landscape of Met-enkephalin using dihedral principal component analysis and well-tempered metadynamics.
    Sicard F; Senet P
    J Chem Phys; 2013 Jun; 138(23):235101. PubMed ID: 23802984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.
    Banerjee R; Cukier RI
    J Phys Chem B; 2014 Mar; 118(11):2883-95. PubMed ID: 24571787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local propensities and statistical potentials of backbone dihedral angles in proteins.
    Betancourt MR; Skolnick J
    J Mol Biol; 2004 Sep; 342(2):635-49. PubMed ID: 15327961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling angles in proteins and circular genomes using multivariate angular distributions based on multiple nonnegative trigonometric sums.
    Fernández-Durán JJ; Gregorio-Domínguez MM
    Stat Appl Genet Mol Biol; 2014 Feb; 13(1):1-18. PubMed ID: 24391194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy landscape of a small peptide revealed by dihedral angle principal component analysis.
    Mu Y; Nguyen PH; Stock G
    Proteins; 2005 Jan; 58(1):45-52. PubMed ID: 15521057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energy landscape of a biomolecule in dihedral principal component space: sampling convergence and correspondence between structures and minima.
    Maisuradze GG; Leitner DM
    Proteins; 2007 May; 67(3):569-78. PubMed ID: 17348026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dihedral angles of tripeptides in solution directly determined by polarized Raman and FTIR spectroscopy.
    Schweitzer-Stenner R
    Biophys J; 2002 Jul; 83(1):523-32. PubMed ID: 12080139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of true dihedral angles and relative grain boundary energies in polycrystals using the disector.
    Chhabra S; Sangal S; Mungole MN
    J Microsc; 2004 Jul; 215(Pt 1):62-6. PubMed ID: 15230876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principal component analysis of molecular dynamics: on the use of Cartesian vs. internal coordinates.
    Sittel F; Jain A; Stock G
    J Chem Phys; 2014 Jul; 141(1):014111. PubMed ID: 25005281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear response theory in dihedral angle space for protein structural change upon ligand binding.
    Omori S; Fuchigami S; Ikeguchi M; Kidera A
    J Comput Chem; 2009 Dec; 30(16):2602-8. PubMed ID: 19373827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of bad dihedral angles: methylfluorenes act as energy barriers for excitons and polarons of oligofluorenes.
    Mani T; Miller JR
    J Phys Chem A; 2014 Oct; 118(40):9451-9. PubMed ID: 25232711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2D Entropy of Discrete Molecular Ensembles.
    Wang J; Brüschweiler R
    J Chem Theory Comput; 2006 Jan; 2(1):18-24. PubMed ID: 26626374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient evaluation of sampling quality of molecular dynamics simulations by clustering of dihedral torsion angles and Sammon mapping.
    Frickenhaus S; Kannan S; Zacharias M
    J Comput Chem; 2009 Feb; 30(3):479-92. PubMed ID: 18680215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comment on: "Energy landscape of a small peptide revealed by dihedral angle principal component analysis".
    Hinsen K
    Proteins; 2006 Aug; 64(3):795-7; discussion 798-9. PubMed ID: 16456860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of principal component analysis-multivariate adaptive regression splines for the simultaneous spectrofluorimetric determination of dialkyltins in micellar media.
    Ghasemi JB; Zolfonoun E
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():357-63. PubMed ID: 23851178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.