These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 264209)

  • 1. Control of upper-limb prostheses: a case for neuroelectric control.
    De Luca CJ
    J Med Eng Technol; 1978 Mar; 2(2):57-61. PubMed ID: 264209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.
    Carey SL; Lura DJ; Highsmith MJ; ;
    J Rehabil Res Dev; 2015; 52(3):247-62. PubMed ID: 26230500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves.
    Wendelken S; Page DM; Davis T; Wark HAC; Kluger DT; Duncan C; Warren DJ; Hutchinson DT; Clark GA
    J Neuroeng Rehabil; 2017 Nov; 14(1):121. PubMed ID: 29178940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical application study of externally powered upper-limb prosthetics systems: the VA elbow, the VA hand, and the VA/NU myoelectric hand systems.
    Lewis EA; Sheredos CR; Sowell TT; Houston VL
    Bull Prosthet Res; 1975; (10-24):51-136. PubMed ID: 776301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory feedback in a myoelectric upper limb prosthesis: a preliminary report.
    Brittain RH; Sauter WF; Gibson DA
    Can J Surg; 1979 Sep; 22(5):481-2. PubMed ID: 497919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myoelectric control of prostheses.
    Parker PA; Scott RN
    Crit Rev Biomed Eng; 1986; 13(4):283-310. PubMed ID: 3512166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research on signal sources for prosthetic limb control].
    Zhang X; Yang Y; Xu X; Hu T; Gao Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Dec; 19(4):692-6. PubMed ID: 12561381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent multifunction myoelectric control of hand prostheses.
    Light CM; Chappell PH; Hudgins B; Engelhart K
    J Med Eng Technol; 2002; 26(4):139-46. PubMed ID: 12396328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of upper-limb prostheses in several degrees of freedom.
    Graupe D
    Bull Prosthet Res; 1974; ():226-36. PubMed ID: 4462903
    [No Abstract]   [Full Text] [Related]  

  • 11. Controlling a multi-degree of freedom upper limb prosthesis using foot controls: user experience.
    Resnik L; Klinger SL; Etter K; Fantini C
    Disabil Rehabil Assist Technol; 2014 Jul; 9(4):318-29. PubMed ID: 23902465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voluntary nerve signals from severed mammalian nerves: long-term recordings.
    De Luca CJ; Gilmore LD
    Science; 1976 Jan; 191(4223):193-5. PubMed ID: 1246608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Context-dependent adaptation improves robustness of myoelectric control for upper-limb prostheses.
    Patel GK; Hahne JM; Castellini C; Farina D; Dosen S
    J Neural Eng; 2017 Oct; 14(5):056016. PubMed ID: 28691694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic myoelectric hand with voluntary control of finger angle and compliance.
    Okuno R; Akazawa K; Yoshida M
    Front Med Biol Eng; 1999; 9(3):199-210. PubMed ID: 10612560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic analysis of myoelectric temporal signatures for multifunctional single-site activation of prostheses and orthoses.
    Graupe D; Salahi J; Zhang DS
    J Biomed Eng; 1985 Jan; 7(1):18-29. PubMed ID: 3982004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of myoelectric and conventional prostheses for adolescent amputees.
    Weaver SA; Lange LR; Vogts VM
    Am J Occup Ther; 1988 Feb; 42(2):87-91. PubMed ID: 3348341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Improvement of prostheses and orthotic aids for the handicapped using electric stimulation and the registration of bioelectric signals].
    Stein RB; Capaday C
    Union Med Can; 1990; 119(3):102-8. PubMed ID: 2219554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Selective nerve transfers to improve the control of myoelectrical arm prostheses].
    Aszmann OC; Dietl H; Frey M
    Handchir Mikrochir Plast Chir; 2008 Feb; 40(1):60-5. PubMed ID: 18322900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.