These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26420924)

  • 61. Protein secondary structure prediction with partially recurrent neural networks.
    Reczko M
    SAR QSAR Environ Res; 1993; 1(2-3):153-9. PubMed ID: 8790631
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Artificial neural network method for predicting protein secondary structure content.
    Cai YD; Liu XJ; Xu XB; Chou KC
    Comput Chem; 2002 Jun; 26(4):347-50. PubMed ID: 12139417
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Predicted alpha-helix/beta-sheet secondary structures for the zinc-binding motifs of human papillomavirus E7 and E6 proteins by consensus prediction averaging and spectroscopic studies of E7.
    Ullman CG; Haris PI; Galloway DA; Emery VC; Perkins SJ
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):229-39. PubMed ID: 8870673
    [TBL] [Abstract][Full Text] [Related]  

  • 64. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 65. SeeHaBITaT: A server on bioinformatics applications for Tospoviruses and other species.
    Sakthivel S; Habeeb SK
    Appl Transl Genom; 2016 Jun; 9():30-2. PubMed ID: 27354938
    [TBL] [Abstract][Full Text] [Related]  

  • 66. CoCoPRED: coiled-coil protein structural feature prediction from amino acid sequence using deep neural networks.
    Feng SH; Xia CQ; Shen HB
    Bioinformatics; 2022 Jan; 38(3):720-729. PubMed ID: 34718416
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dali server update.
    Holm L; Laakso LM
    Nucleic Acids Res; 2016 Jul; 44(W1):W351-5. PubMed ID: 27131377
    [TBL] [Abstract][Full Text] [Related]  

  • 68. LECTINPred: web Server that Uses Complex Networks of Protein Structure for Prediction of Lectins with Potential Use as Cancer Biomarkers or in Parasite Vaccine Design.
    Munteanu CR; Pedreira N; Dorado J; Pazos A; Pérez-Montoto LG; Ubeira FM; González-Díaz H
    Mol Inform; 2014 Apr; 33(4):276-85. PubMed ID: 27485774
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A novel method for accurate one-dimensional protein structure prediction based on fragment matching.
    Zhou T; Shu N; Hovmöller S
    Bioinformatics; 2010 Feb; 26(4):470-7. PubMed ID: 20007252
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction.
    Cuff JA; Barton GJ
    Proteins; 1999 Mar; 34(4):508-19. PubMed ID: 10081963
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Template-based C8-SCORPION: a protein 8-state secondary structure prediction method using structural information and context-based features.
    Yaseen A; Li Y
    BMC Bioinformatics; 2014; 15 Suppl 8(Suppl 8):S3. PubMed ID: 25080939
    [TBL] [Abstract][Full Text] [Related]  

  • 72. CC
    Kumar P; Petrenas R; Dawson WM; Schweke H; Levy ED; Woolfson DN
    Protein Sci; 2023 Nov; 32(11):e4789. PubMed ID: 37768271
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Position-specific residue preference features around the ends of helices and strands and a novel strategy for the prediction of secondary structures.
    Duan M; Huang M; Ma C; Li L; Zhou Y
    Protein Sci; 2008 Sep; 17(9):1505-12. PubMed ID: 18519808
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.
    Zhu J; Zhang H; Li SC; Wang C; Kong L; Sun S; Zheng WM; Bu D
    Bioinformatics; 2017 Dec; 33(23):3749-3757. PubMed ID: 28961795
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Automated analysis of interatomic contacts in proteins.
    Sobolev V; Sorokine A; Prilusky J; Abola EE; Edelman M
    Bioinformatics; 1999 Apr; 15(4):327-32. PubMed ID: 10320401
    [TBL] [Abstract][Full Text] [Related]  

  • 76. EVA: continuous automatic evaluation of protein structure prediction servers.
    Eyrich VA; Martí-Renom MA; Przybylski D; Madhusudhan MS; Fiser A; Pazos F; Valencia A; Sali A; Rost B
    Bioinformatics; 2001 Dec; 17(12):1242-3. PubMed ID: 11751240
    [TBL] [Abstract][Full Text] [Related]  

  • 77. PhyreStorm: A Web Server for Fast Structural Searches Against the PDB.
    Mezulis S; Sternberg MJE; Kelley LA
    J Mol Biol; 2016 Feb; 428(4):702-708. PubMed ID: 26517951
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Knowledge base and neural network approach for protein secondary structure prediction.
    Patel MS; Mazumdar HS
    J Theor Biol; 2014 Nov; 361():182-9. PubMed ID: 25128736
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Estimating the significance of sequence order in protein secondary structure and prediction.
    Park J; Dietmann S; Heger A; Holm L
    Bioinformatics; 2000 Nov; 16(11):978-87. PubMed ID: 11159309
    [TBL] [Abstract][Full Text] [Related]  

  • 80. BCL::contact-low confidence fold recognition hits boost protein contact prediction and de novo structure determination.
    Karakaş M; Woetzel N; Meiler J
    J Comput Biol; 2010 Feb; 17(2):153-68. PubMed ID: 19772383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.