These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26421224)

  • 1. Acousto-plasmofluidics: Acoustic modulation of surface plasmon resonance in microfluidic systems.
    Ahmed D; Peng X; Ozcelik A; Zheng Y; Huang TJ
    AIP Adv; 2015 Sep; 5(9):097161. PubMed ID: 26421224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale.
    Wang M; Zhao C; Miao X; Zhao Y; Rufo J; Liu YJ; Huang TJ; Zheng Y
    Small; 2015 Sep; 11(35):4423-44. PubMed ID: 26140612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplitude modulation schemes for enhancing acoustically-driven microcentrifugation and micromixing.
    Ang KM; Yeo LY; Hung YM; Tan MK
    Biomicrofluidics; 2016 Sep; 10(5):054106. PubMed ID: 27703592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact plasmonic optical biosensors based on nanostructured gradient index lenses integrated into microfluidic cells.
    Horrer A; Haas J; Freudenberger K; Gauglitz G; Kern DP; Fleischer M
    Nanoscale; 2017 Nov; 9(44):17378-17386. PubMed ID: 29095450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-chip surface-based detection with nanohole arrays.
    De Leebeeck A; Kumar LK; de Lange V; Sinton D; Gordon R; Brolo AG
    Anal Chem; 2007 Jun; 79(11):4094-100. PubMed ID: 17447728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors.
    Lin L; Zheng Y
    Nanoscale; 2015 Jul; 7(28):12205-14. PubMed ID: 26133011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities.
    Faucheaux JA; Stanton AL; Jain PK
    J Phys Chem Lett; 2014 Mar; 5(6):976-85. PubMed ID: 26270976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact acousto-optic multimode interference device in (Al,Ga)As.
    Bühler DD; Crespo-Poveda A; Tahraoui A; Biermann K; Santos PV; Cantarero A; de Lima MM
    Opt Express; 2020 Nov; 28(24):35833-35843. PubMed ID: 33379691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Integrated Artificial Cilia Based Microfluidic Device for Micropumping and Micromixing Applications.
    Wu YA; Panigrahi B; Lu YH; Chen CY
    Micromachines (Basel); 2017 Aug; 8(9):. PubMed ID: 30400450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-fidelity optofluidic on-chip sensors using well-defined gold nanowell crystals.
    Lee SY; Kim SH; Jang SG; Heo CJ; Shim JW; Yang SM
    Anal Chem; 2011 Dec; 83(23):9174-80. PubMed ID: 22017272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A millisecond micromixer via single-bubble-based acoustic streaming.
    Ahmed D; Mao X; Shi J; Juluri BK; Huang TJ
    Lab Chip; 2009 Sep; 9(18):2738-41. PubMed ID: 19704991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time concentration monitoring in microfluidic system via plasmonic nanocrescent arrays.
    Zhou B; Xiao X; Liu T; Gao Y; Huang Y; Wen W
    Biosens Bioelectron; 2016 Mar; 77():385-92. PubMed ID: 26436326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry.
    Vala M; Ertsgaard CT; Wittenberg NJ; Oh SH
    ACS Sens; 2019 Dec; 4(12):3265-3274. PubMed ID: 31762262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic vertical dimer arrays as elements for biosensing.
    Horrer A; Krieg K; Freudenberger K; Rau S; Leidner L; Gauglitz G; Kern DP; Fleischer M
    Anal Bioanal Chem; 2015 Nov; 407(27):8225-31. PubMed ID: 26345439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of Hybrid Electrochromic Materials with Large Electrical Modulation of Plasmonic Resonances.
    Ledin PA; Jeon JW; Geldmeier JA; Ponder JF; Mahmoud MA; El-Sayed M; Reynolds JR; Tsukruk VV
    ACS Appl Mater Interfaces; 2016 May; 8(20):13064-75. PubMed ID: 27145297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological sensing using hybridization phase of plasmonic resonances with photonic lattice modes in arrays of gold nanoantennas.
    Gutha RR; Sadeghi SM; Sharp C; Wing WJ
    Nanotechnology; 2017 Sep; 28(35):355504. PubMed ID: 28649962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Localized Surface Plasmon Resonance Sensor with Metal-Insulator-Metal Nanodisks on PDMS Substrate.
    Chang CY; Lin HT; Lai MS; Shieh TY; Peng CC; Shih MH; Tung YC
    Sci Rep; 2018 Aug; 8(1):11812. PubMed ID: 30087401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustically Driven Micromixing: Effect of Transducer Geometry.
    Lim E; Lee L; Yeo LY; Hung YM; Tan MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Aug; 66(8):1387-1394. PubMed ID: 31180889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip.
    Hsu WT; Hsieh WH; Cheng SF; Jen CP; Wu CC; Li CH; Lee CY; Li WY; Chau LK; Chiang CY; Lyu SR
    Anal Chim Acta; 2011 Jul; 697(1-2):75-82. PubMed ID: 21641421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.