These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 26421360)
1. In situ synthesis of TiO2(B) nanotube/nanoparticle composite anode materials for lithium ion batteries. Liu X; Sun Q; Ng AM; Djurišić AB; Xie M; Liao C; Shih K; Vranješ M; Nedeljković JM; Deng Z Nanotechnology; 2015 Oct; 26(42):425403. PubMed ID: 26421360 [TBL] [Abstract][Full Text] [Related]
2. Nanotubular Heterostructure of Tin Dioxide/Titanium Dioxide as a Binder-Free Anode in Lithium-Ion Batteries. Kim M; Lee J; Lee S; Seo S; Bae C; Shin H ChemSusChem; 2015 Jul; 8(14):2363-71. PubMed ID: 25802052 [TBL] [Abstract][Full Text] [Related]
3. High Lithium Insertion Voltage Single-Crystal H Guo Q; Chen L; Shan Z; Lee WSV; Xiao W; Liu Z; Liang J; Yang G; Xue J ChemSusChem; 2018 Jan; 11(1):299-310. PubMed ID: 29106030 [TBL] [Abstract][Full Text] [Related]
4. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Tang Y; Zhang Y; Deng J; Qi D; Leow WR; Wei J; Yin S; Dong Z; Yazami R; Chen Z; Chen X Angew Chem Int Ed Engl; 2014 Dec; 53(49):13488-92. PubMed ID: 25168684 [TBL] [Abstract][Full Text] [Related]
5. Hierarchical porous anatase TiO2 derived from a titanium metal-organic framework as a superior anode material for lithium ion batteries. Xiu Z; Alfaruqi MH; Gim J; Song J; Kim S; Vu Thi T; Duong PT; Baboo JP; Mathew V; Kim J Chem Commun (Camb); 2015 Aug; 51(61):12274-7. PubMed ID: 26137998 [TBL] [Abstract][Full Text] [Related]
6. Mesoporous anatase TiO2 nanorods as thermally robust anode materials for Li-ion batteries: detailed insight into the formation mechanism. Seisenbaeva GA; Nedelec JM; Daniel G; Tiseanu C; Parvulescu V; Pol VG; Abrego L; Kessler VG Chemistry; 2013 Dec; 19(51):17439-44. PubMed ID: 24243542 [TBL] [Abstract][Full Text] [Related]
7. SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability. Jeun JH; Park KY; Kim DH; Kim WS; Kim HC; Lee BS; Kim H; Yu WR; Kang K; Hong SH Nanoscale; 2013 Sep; 5(18):8480-3. PubMed ID: 23897097 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of Titania@Carbon Nanocomposite from Urea-Impregnated Cellulose for Efficient Lithium and Sodium Batteries. Henry A; Louvain N; Fontaine O; Stievano L; Monconduit L; Boury B ChemSusChem; 2016 Feb; 9(3):264-73. PubMed ID: 26812587 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional coherent titania-mesoporous carbon nanocomposite and its lithium-ion storage properties. Shen L; Uchaker E; Yuan C; Nie P; Zhang M; Zhang X; Cao G ACS Appl Mater Interfaces; 2012 Jun; 4(6):2985-92. PubMed ID: 22630038 [TBL] [Abstract][Full Text] [Related]
10. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries. Han H; Song T; Lee EK; Devadoss A; Jeon Y; Ha J; Chung YC; Choi YM; Jung YG; Paik U ACS Nano; 2012 Sep; 6(9):8308-15. PubMed ID: 22935008 [TBL] [Abstract][Full Text] [Related]
11. Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries. Chen C; Huang Y; An C; Zhang H; Wang Y; Jiao L; Yuan H ChemSusChem; 2015 Jan; 8(1):114-22. PubMed ID: 25425492 [TBL] [Abstract][Full Text] [Related]
12. Sulfidated TiO2 nanotubes: a potential 3D cathode material for Li-ion micro batteries. Kyeremateng NA; Plylahan N; dos Santos AC; Taveira LV; Dick LF; Djenizian T Chem Commun (Camb); 2013 May; 49(39):4205-7. PubMed ID: 23165523 [TBL] [Abstract][Full Text] [Related]
13. Crystallinity-controlled titanium oxide-carbon nanocomposites with enhanced lithium storage performance. Zhou Y; Lee J; Lee CW; Wu M; Yoon S ChemSusChem; 2012 Dec; 5(12):2376-82. PubMed ID: 23109490 [TBL] [Abstract][Full Text] [Related]
14. Improved lithium storage properties of electrospun TiO2 with tunable morphology: from porous anatase to necklace rutile. Yang Y; Wang H; Zhou Q; Kong M; Ye H; Yang G Nanoscale; 2013 Nov; 5(21):10267-74. PubMed ID: 24056926 [TBL] [Abstract][Full Text] [Related]
15. Aligned TiO₂ nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries. Xie K; Guo M; Lu W; Huang H Nanotechnology; 2014 Nov; 25(45):455401. PubMed ID: 25338125 [TBL] [Abstract][Full Text] [Related]
16. Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries. Cao FF; Xin S; Guo YG; Wan LJ Phys Chem Chem Phys; 2011 Feb; 13(6):2014-20. PubMed ID: 21203647 [TBL] [Abstract][Full Text] [Related]
17. All-Solid-State Lithium Ion Batteries Using Self-Organized TiO Sugiawati VA; Vacandio F; Djenizian T Molecules; 2020 May; 25(9):. PubMed ID: 32369974 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic layer-by-layer Co-mineralization approach towards TiO2/Au nanosheets with high rate performance for lithium ion batteries. Hao B; Yan Y; Wang X; Chen G Nanoscale; 2013 Nov; 5(21):10472-80. PubMed ID: 24057028 [TBL] [Abstract][Full Text] [Related]
19. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Park SK; Yu SH; Woo S; Quan B; Lee DC; Kim MK; Sung YE; Piao Y Dalton Trans; 2013 Feb; 42(7):2399-405. PubMed ID: 23208383 [TBL] [Abstract][Full Text] [Related]
20. Polyacrylonitrile block copolymers for the preparation of a thin carbon coating around TiO2 nanorods for advanced lithium-ion batteries. Oschmann B; Bresser D; Tahir MN; Fischer K; Tremel W; Passerini S; Zentel R Macromol Rapid Commun; 2013 Nov; 34(21):1693-700. PubMed ID: 24115201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]