These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26421505)

  • 1. Carrier Recombination Dynamics in Sulfur-Doped InP Nanowires.
    Zhang W; Lehmann S; Mergenthaler K; Wallentin J; Borgström MT; Pistol ME; Yartsev A
    Nano Lett; 2015 Nov; 15(11):7238-44. PubMed ID: 26421505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombination dynamics in aerotaxy-grown Zn-doped GaAs nanowires.
    Zhang W; Yang F; Messing ME; Mergenthaler K; Pistol ME; Deppert K; Samuelson L; Magnusson MH; Yartsev A
    Nanotechnology; 2016 Nov; 27(45):455704. PubMed ID: 27713183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carrier Recombination Processes in Gallium Indium Phosphide Nanowires.
    Zhang W; Zeng X; Su X; Zou X; Mante PA; Borgström MT; Yartsev A
    Nano Lett; 2017 Jul; 17(7):4248-4254. PubMed ID: 28654299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially Resolved Doping Concentration and Nonradiative Lifetime Profiles in Single Si-Doped InP Nanowires Using Photoluminescence Mapping.
    Wang F; Gao Q; Peng K; Li Z; Li Z; Guo Y; Fu L; Smith LM; Tan HH; Jagadish C
    Nano Lett; 2015 May; 15(5):3017-23. PubMed ID: 25831461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier dynamics and recombination mechanisms in InP twinning superlattice nanowires.
    Yuan X; Liu K; Skalsky S; Parkinson P; Fang L; He J; Tan HH; Jagadish C
    Opt Express; 2020 May; 28(11):16795-16804. PubMed ID: 32549494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires.
    Su X; Zeng X; Němec H; Zou X; Zhang W; Borgström MT; Yartsev A
    Nanoscale; 2019 Oct; 11(40):18550-18558. PubMed ID: 31363719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions.
    Yong CK; Wong-Leung J; Joyce HJ; Lloyd-Hughes J; Gao Q; Tan HH; Jagadish C; Johnston MB; Herz LM
    Nano Lett; 2013 Sep; 13(9):4280-7. PubMed ID: 23919626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoluminescence and Boosting Electron-Phonon Coupling in CdS Nanowires with Variable Sn(IV) Dopant Concentration.
    Peng Y; Luo Y; Zhou W; Zhong X; Yin Y; Tang D; Zou B
    Nanoscale Res Lett; 2021 Jan; 16(1):19. PubMed ID: 33512585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescence model of sulfur passivated p-InP nanowires.
    Tajik N; Haapamaki CM; LaPierre RR
    Nanotechnology; 2012 Aug; 23(31):315703. PubMed ID: 22797486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trap-Limited Dynamics of Excited Carriers and Interpretation of the Photoluminescence Decay Kinetics in Metal Halide Perovskites.
    Chirvony VS; Martínez-Pastor JP
    J Phys Chem Lett; 2018 Sep; 9(17):4955-4962. PubMed ID: 30107130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.
    Johnston MB; Herz LM
    Acc Chem Res; 2016 Jan; 49(1):146-54. PubMed ID: 26653572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of strongly degenerate electron-hole plasmas and excitons in single InP nanowires.
    Titova LV; Hoang TB; Yarrison-Rice JM; Jackson HE; Kim Y; Joyce HJ; Gao Q; Tan HH; Jagadish C; Zhang X; Zou J; Smith LM
    Nano Lett; 2007 Nov; 7(11):3383-7. PubMed ID: 17902724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Investigation of the Defect Activity Contributing to the Photoluminescence Blinking of CsPbBr
    Ahmed T; Seth S; Samanta A
    ACS Nano; 2019 Nov; 13(11):13537-13544. PubMed ID: 31714741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct photocurrent response of individual GaAs nanowires induced by n-type doping.
    Xia H; Lu ZY; Li TX; Parkinson P; Liao ZM; Liu FH; Lu W; Hu WD; Chen PP; Xu HY; Zou J; Jagadish C
    ACS Nano; 2012 Jul; 6(7):6005-13. PubMed ID: 22724925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy.
    Joyce HJ; Docherty CJ; Gao Q; Tan HH; Jagadish C; Lloyd-Hughes J; Herz LM; Johnston MB
    Nanotechnology; 2013 May; 24(21):214006. PubMed ID: 23619012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface polarons and optical micro-cavity modulated broad range multi-mode emission of Te-doped CdS nanowires.
    Zheng Q; Zhou W; Peng Y; Yin Y; Zhong M; Zhao Z; Zhang Q; Tang D; Zeng R; Zou B
    Nanotechnology; 2018 Nov; 29(46):465709. PubMed ID: 30188323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition between auger recombination and hot-carrier trapping in PL intensity fluctuations of type II nanocrystals.
    Mangum BD; Wang F; Dennis AM; Gao Y; Ma X; Hollingsworth JA; Htoon H
    Small; 2014 Jul; 10(14):2892-901. PubMed ID: 24715631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hole and Electron Effective Masses in Single InP Nanowires with a Wurtzite-Zincblende Homojunction.
    Tedeschi D; Fonseka HA; Blundo E; Granados Del Águila A; Guo Y; Tan HH; Christianen PCM; Jagadish C; Polimeni A; De Luca M
    ACS Nano; 2020 Sep; 14(9):11613-11622. PubMed ID: 32865391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity.
    Li K; Ng KW; Tran TT; Sun H; Lu F; Chang-Hasnain CJ
    Nano Lett; 2015 Nov; 15(11):7189-98. PubMed ID: 26444034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.