These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26421541)

  • 1. Speed optimized linear-mode high-voltage CMOS avalanche photodiodes with high responsivity.
    Enne R; Steindl B; Zimmermann H
    Opt Lett; 2015 Oct; 40(19):4400-3. PubMed ID: 26421541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product.
    Lee MJ; Choi WY
    Opt Express; 2010 Nov; 18(23):24189-94. PubMed ID: 21164764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 0.35 μm CMOS avalanche photodiode with high responsivity and responsivity-bandwidth product.
    Gaberl W; Steindl B; Schneider-Hornstein K; Enne R; Zimmermann H
    Opt Lett; 2014 Feb; 39(3):586-9. PubMed ID: 24487872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultraviolet Response in Coplanar Silicon Avalanche Photodiodes with CMOS Compatibility.
    Liu Q; Xu L; Jin Y; Zhang S; Wang Y; Hu A; Guo X
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 45 nm CMOS Avalanche Photodiode with 8.4-GHz Bandwidth.
    Zhi W; Quan Q; Yu P; Jiang Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31936108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Optimization of High-Responsivity High-Speed Ge/Si Avalanche Photodiode in the C+L Band.
    Li C; Li X; Cai Y; Wang W; Yu M
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit.
    Marshall AR; Ker PJ; Krysa A; David JP; Tan CH
    Opt Express; 2011 Nov; 19(23):23341-9. PubMed ID: 22109211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging.
    Resetar T; De Munck K; Haspeslagh L; Rosmeulen M; Süss A; Puers R; Van Hoof C
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27537882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous enhancement of the bandwidth and responsivity in high-speed avalanche photodiodes with an optimized flip-chip bonding package.
    Naseem ; Chen NW; Parvez SH; Ahmad Z; Yang S; Chen HS; Chang HS; Huang JJ; Shi JW
    Opt Express; 2023 Jul; 31(16):26463-26473. PubMed ID: 37710507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Waveguide-Integrated Ge/Si Avalanche Photodetector with Lateral Multiplication Region.
    Liu D; Zhang P; Tang B; Wang W; Li Z
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Area and Bandwidth Enhancement of an n
    Kohneh Poushi SS; Goll B; Schneider-Hornstein K; Hofbauer M; Zimmermann H
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 10 Gbps silicon waveguide-integrated infrared avalanche photodiode.
    Ackert JJ; Karar AS; Paez DJ; Jessop PE; Cartledge JC; Knights AP
    Opt Express; 2013 Aug; 21(17):19530-7. PubMed ID: 24105500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Energy Ion Implantation and Deep-Mesa Si-Avalanche Photodiodes with Improved Fabrication Process.
    Wang T; Peng H; Cao P; Zhuang Q; Deng J; Chen J; Zheng W
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-silicon microring avalanche photodiodes with a >65 A/W response.
    Peng Y; Yuan Y; Sorin WV; Cheung S; Huang Z; Fiorentino M; Beausoleil RG
    Opt Lett; 2023 Mar; 48(5):1315-1318. PubMed ID: 36857277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CMOS integrated avalanche photodiodes and frequency-mixing optical sensor front end for portable NIR spectroscopy instruments.
    Yun R; Sthalekar C; Joyner VM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():10-3. PubMed ID: 22254238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Fabrication of High-Efficiency, Low-Power, and Low-Leakage Si-Avalanche Photodiodes for Low-Light Sensing.
    Rawat A; Ahamed A; Bartolo-Perez C; Mayet AS; McPhillips LN; Islam MS
    ACS Photonics; 2023 May; 10(5):1416-1423. PubMed ID: 37223126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of InGaAs/InAlAs Avalanche Photodiodes.
    Chen J; Zhang Z; Zhu M; Xu J; Li X
    Nanoscale Res Lett; 2017 Dec; 12(1):33. PubMed ID: 28091945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared avalanche photodiodes from bulk to 2D materials.
    Martyniuk P; Wang P; Rogalski A; Gu Y; Jiang R; Wang F; Hu W
    Light Sci Appl; 2023 Aug; 12(1):212. PubMed ID: 37652900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linearity improvement of high-speed avalanche photodiodes using thin depleted absorber operating with higher order modulation format.
    Nada M; Hoshi T; Yamazaki H; Hashimoto T; Matsuzaki H
    Opt Express; 2015 Oct; 23(21):27715-23. PubMed ID: 26480434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic crystal enabled manipulation of optical and electric field in germanium avalanche photodetectors.
    Song J; Yuan S; Cui C; Li Y; Zeng C; Xia J
    Nanotechnology; 2021 Apr; 32(14):145201. PubMed ID: 33352536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.