BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26421549)

  • 1. Prediction of multiple resonance characteristics by an extended resistor-inductor-capacitor circuit model for plasmonic metamaterials absorbers in infrared.
    Xu X; Li Y; Wang B; Zhou Z
    Opt Lett; 2015 Oct; 40(19):4432-5. PubMed ID: 26421549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of polaritons coupling from perspective of equivalent MLC circuits model in slit arrays.
    Guo Y; Shuai Y; Tan H
    Opt Express; 2019 Jul; 27(15):21173-21184. PubMed ID: 31510199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rounding corners of nano-square patches for multispectral plasmonic metamaterial absorbers.
    Ayas S; Bakan G; Dana A
    Opt Express; 2015 May; 23(9):11763-70. PubMed ID: 25969267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review.
    Ogawa S; Kimata M
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29558454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene on metal-insulator-metal-based plasmonic metamaterials at infrared wavelengths.
    Ogawa S; Shimatani M; Fukushima S; Okuda S; Matsumoto K
    Opt Express; 2018 Mar; 26(5):5665-5674. PubMed ID: 29529768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials.
    Ogawa S; Kimata M
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies.
    Xu J; Zhao Z; Yu H; Yang L; Gou P; Cao J; Zou Y; Qian J; Shi T; Ren Q; An Z
    Opt Express; 2016 Oct; 24(22):25742-25751. PubMed ID: 27828509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.
    Gao F; Zheng Q; Zheng Y
    Med Phys; 2014 May; 41(5):053302. PubMed ID: 24784406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circuit Modeling of the Modulator Based on a Plasmonic Waveguide.
    Ghahri MR; Faez R
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5601-5607. PubMed ID: 30961714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film.
    Lee BJ; Wang LP; Zhang ZM
    Opt Express; 2008 Jul; 16(15):11328-36. PubMed ID: 18648451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wafer-scale metamaterials for polarization-insensitive and dual-band perfect absorption.
    Liu J; Zhu M; Zhang N; Zhang H; Zhou Y; Sun S; Yi N; Gao S; Song Q; Xiao S
    Nanoscale; 2015 Dec; 7(45):18914-7. PubMed ID: 26525777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degenerate quasi-normal mode theory for near-field radiation between plasmonic structures.
    Li J; Li Z; Shen S
    Opt Express; 2020 Nov; 28(23):34123-34136. PubMed ID: 33182889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperpolarizability of Plasmonic Meta-Atoms in Metasurfaces.
    Bin-Alam MS; Baxter J; Awan KM; Kiviniemi A; Mamchur Y; Lesina AC; Tsakmakidis KL; Huttunen MJ; Ramunno L; Dolgaleva K
    Nano Lett; 2021 Jan; 21(1):51-59. PubMed ID: 33356325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elimination of Unwanted Modes in Wavelength-Selective Uncooled Infrared Sensors with Plasmonic Metamaterial Absorbers using a Subtraction Operation.
    Ogawa S; Takagawa Y; Kimata M
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth.
    Chen PY; Farhat M; Bağcı H
    Nanotechnology; 2015 Apr; 26(16):164002. PubMed ID: 25824491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency.
    Wang J; Fan C; Ding P; He J; Cheng Y; Hu W; Cai G; Liang E; Xue Q
    Opt Express; 2012 Jul; 20(14):14871-8. PubMed ID: 22772182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angle-insensitive dual-functional resonators combining cavity mode resonance and magnetic resonance.
    Qing YM; Ma HF; Yu S; Cui TJ
    Opt Lett; 2019 Jun; 44(12):3118-3121. PubMed ID: 31199395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictable infrared dual-band narrow-band absorber for infrared detection.
    Cui G; Lv J
    Nanotechnology; 2022 May; 33(33):. PubMed ID: 35576910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfect selective metamaterial solar absorbers.
    Wang H; Wang L
    Opt Express; 2013 Nov; 21 Suppl 6():A1078-93. PubMed ID: 24514927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.