These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 26421623)
1. Potential application of a bioemulsifier-producing actinobacterium for treatment of vinasse. Colin VL; Cortes ÁA; Aparicio JD; Amoroso MJ Chemosphere; 2016 Feb; 144():842-7. PubMed ID: 26421623 [TBL] [Abstract][Full Text] [Related]
2. Integral use of sugarcane vinasse for biomass production of actinobacteria: Potential application in soil remediation. Aparicio JD; Benimeli CS; Almeida CA; Polti MA; Colin VL Chemosphere; 2017 Aug; 181():478-484. PubMed ID: 28460294 [TBL] [Abstract][Full Text] [Related]
3. Production and partial characterization of bioemulsifier from a chromium-resistant actinobacteria. Colin VL; Pereira CE; Villegas LB; Amoroso MJ; Abate CM Chemosphere; 2013 Jan; 90(4):1372-8. PubMed ID: 22985590 [TBL] [Abstract][Full Text] [Related]
4. Development of a vinasse nutritive solution for hydroponics. dos Santos JD; Lopes da Silva AL; da Luz Costa J; Scheidt GN; Novak AC; Sydney EB; Soccol CR J Environ Manage; 2013 Jan; 114():8-12. PubMed ID: 23201600 [TBL] [Abstract][Full Text] [Related]
5. Vinasse odyssey: sugarcane vinasse remediation and laccase production by Trametes sp. immobilized in polyurethane foam. Ahmed PM; Nieto-Peñalver CG; de Figueroa LIC; Pajot HF Biodegradation; 2022 Aug; 33(4):333-348. PubMed ID: 35524898 [TBL] [Abstract][Full Text] [Related]
6. Characterization and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1. Zheng C; Li Z; Su J; Zhang R; Liu C; Zhao M J Appl Microbiol; 2012 Jul; 113(1):44-51. PubMed ID: 22515599 [TBL] [Abstract][Full Text] [Related]
7. Efficiency of physicochemical and biological treatments of vinasse and their influence on indigenous microbiota for disposal into the environment. Campos CR; Mesquita VA; Silva CF; Schwan RF Waste Manag; 2014 Nov; 34(11):2036-46. PubMed ID: 25022548 [TBL] [Abstract][Full Text] [Related]
8. Selection of an actinobacteria mixed culture for chlordane remediation. Pesticide effects on microbial morphology and bioemulsifier production. Fuentes MS; Colin VL; Amoroso MJ; Benimeli CS J Basic Microbiol; 2016 Feb; 56(2):127-37. PubMed ID: 26554742 [TBL] [Abstract][Full Text] [Related]
9. A study on the reduction of hexavalent chromium in aqueous solutions by vinasse. Altundogan HS; Ozer A; Tümen F Environ Technol; 2004 Nov; 25(11):1257-63. PubMed ID: 15617440 [TBL] [Abstract][Full Text] [Related]
10. Production of bioemulsifiers by Amycolatopsis tucumanensis DSM 45259 and their potential application in remediation technologies for soils contaminated with hexavalent chromium. Colin VL; Castro MF; Amoroso MJ; Villegas LB J Hazard Mater; 2013 Oct; 261():577-83. PubMed ID: 23994656 [TBL] [Abstract][Full Text] [Related]
11. Bioemulsifier production by Streptomyces sp. S22 isolated from garden soil. Maniyar JP; Doshi DV; Bhuyan SS; Mujumdar SS Indian J Exp Biol; 2011 Apr; 49(4):293-7. PubMed ID: 21614894 [TBL] [Abstract][Full Text] [Related]
12. Streptomyces luridus So3.2 from Antarctic soil as a novel producer of compounds with bioemulsification potential. Lamilla C; Braga D; Castro R; Guimarães C; V A de Castilho L; Freire DMG; Barrientos L PLoS One; 2018; 13(4):e0196054. PubMed ID: 29684071 [TBL] [Abstract][Full Text] [Related]
14. Seasonal variation of the organic and inorganic composition of sugarcane vinasse: main implications for its environmental uses. de Godoi LAG; Camiloti PR; Bernardes AN; Sanchez BLS; Torres APR; da Conceição Gomes A; Botta LS Environ Sci Pollut Res Int; 2019 Oct; 26(28):29267-29282. PubMed ID: 31396875 [TBL] [Abstract][Full Text] [Related]
15. Clastogenicity of landfarming soil treated with sugar cane vinasse. da Silva Souza T; Hencklein FA; de Franceschi de Angelis D; Fontanetti CS Environ Monit Assess; 2013 Feb; 185(2):1627-36. PubMed ID: 22580848 [TBL] [Abstract][Full Text] [Related]
16. Effect of the addition of an inorganic carbon source on the degradation of sotol vinasse by Rhodopseudomonastelluris. Cisneros de la Cueva S; Jaimes Zuñiga SC; Pérez Vega SB; Mendoza Chacon J; Salmerón Ochoa I; Quintero Ramos A J Environ Manage; 2024 Mar; 355():120350. PubMed ID: 38422846 [TBL] [Abstract][Full Text] [Related]
17. Bioremediation of chromium(VI) contaminated soil by Streptomyces sp. MC1. Polti MA; García RO; Amoroso MJ; Abate CM J Basic Microbiol; 2009 Jun; 49(3):285-92. PubMed ID: 19025876 [TBL] [Abstract][Full Text] [Related]
18. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
19. Use of sugar cane vinasse to mitigate aluminum toxicity to Saccharomyces cerevisiae. de Souza Oliveira RP; Rivas Torres B; Zilli M; de Araújo Viana Marques D; Basso LC; Converti A Arch Environ Contam Toxicol; 2009 Oct; 57(3):488-94. PubMed ID: 19184166 [TBL] [Abstract][Full Text] [Related]
20. Mixed yeasts inocula for simultaneous production of SCP and treatment of vinasse to reduce soil and fresh water pollution. Pires JF; Ferreira GMR; Reis KC; Schwan RF; Silva CF J Environ Manage; 2016 Nov; 182():455-463. PubMed ID: 27526083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]