These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26421628)

  • 21. Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single- and bi-solute experiments.
    Schreiter IJ; Schmidt W; Schüth C
    Chemosphere; 2018 Jul; 203():34-43. PubMed ID: 29605747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions.
    Lu S; Zong Y
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30401-30409. PubMed ID: 30159845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars.
    Sun K; Ro K; Guo M; Novak J; Mashayekhi H; Xing B
    Bioresour Technol; 2011 May; 102(10):5757-63. PubMed ID: 21463938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A synthesis of parameters related to the binding of neutral organic compounds to charcoal.
    Hale SE; Arp HP; Kupryianchyk D; Cornelissen G
    Chemosphere; 2016 Feb; 144():65-74. PubMed ID: 26347927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 °C.
    Yang K; Jiang Y; Yang J; Lin D
    Environ Pollut; 2018 Feb; 233():64-70. PubMed ID: 29053999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of chemical oxidation on phenanthrene sorption by grass- and manure-derived biochars.
    Jin J; Sun K; Wang Z; Han L; Du P; Wang X; Xing B
    Sci Total Environ; 2017 Nov; 598():789-796. PubMed ID: 28458195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochar as low-cost sorbent of volatile fuel organic compounds: potential application to water remediation.
    Saiz-Rubio R; Balseiro-Romero M; Antelo J; Díez E; Fiol S; Macías F
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11605-11617. PubMed ID: 30484048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds.
    Zhang M; Shu L; Shen X; Guo X; Tao S; Xing B; Wang X
    Environ Pollut; 2014 Dec; 195():84-90. PubMed ID: 25194275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The changes in biochar properties and sorption capacities after being cultured with wheat for 3 months.
    Ren X; Sun H; Wang F; Cao F
    Chemosphere; 2016 Feb; 144():2257-63. PubMed ID: 26598994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars.
    Jung C; Park J; Lim KH; Park S; Heo J; Her N; Oh J; Yun S; Yoon Y
    J Hazard Mater; 2013 Dec; 263 Pt 2():702-10. PubMed ID: 24231319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of biochar pyrolysis temperature on intracellular and extracellular biodegradation of biochar-adsorbed organic compounds.
    Tao J; Wu W; Lin D; Yang K
    Environ Pollut; 2024 Apr; 346():123583. PubMed ID: 38365081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation.
    Srinivasan P; Sarmah AK
    Sci Total Environ; 2015 Jan; 502():471-80. PubMed ID: 25290589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism.
    Choi H; Al-Abed SR
    J Hazard Mater; 2009 Jun; 165(1-3):860-6. PubMed ID: 19059706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water clusters contributed to molecular interactions of ionizable organic pollutants with aromatized biochar via π-PAHB: Sorption experiments and DFT calculations.
    Zhang K; Chen B; Mao J; Zhu L; Xing B
    Environ Pollut; 2018 Sep; 240():342-352. PubMed ID: 29751330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar.
    Rajapaksha AU; Vithanage M; Ahmad M; Seo DC; Cho JS; Lee SE; Lee SS; Ok YS
    J Hazard Mater; 2015 Jun; 290():43-50. PubMed ID: 25734533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sorption comparison between phenanthrene and its degradation intermediates, 9,10-phenanthrenequinone and 9-phenanthrol in soils/sediments.
    Xiao D; Pan B; Wu M; Liu Y; Zhang D; Peng H
    Chemosphere; 2012 Jan; 86(2):183-9. PubMed ID: 22055310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The sorption of organic contaminants on biochars derived from sediments with high organic carbon content.
    Wu M; Pan B; Zhang D; Xiao D; Li H; Wang C; Ning P
    Chemosphere; 2013 Jan; 90(2):782-8. PubMed ID: 23089389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites.
    Denyes MJ; Parisien MA; Rutter A; Zeeb BA
    J Vis Exp; 2014 Nov; (93):e52183. PubMed ID: 25489663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative study on the relative significance of low-/high-condensation aromatic moieties in biochar to organic contaminant sorption.
    Chang Z; Tian L; Zhang J; Zhou D
    Ecotoxicol Environ Saf; 2022 Jun; 238():113598. PubMed ID: 35525120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effects of pH and Ni2+ on sorption behavior of phenanthrene on engineered nano-silica].
    Luo P; Sun HW; Zhang P
    Huan Jing Ke Xue; 2012 Aug; 33(8):2882-8. PubMed ID: 23213919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.