BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26421631)

  • 1. Surface doping of La ions into ZnO nanocrystals to lower the optimal working temperature for HCHO sensing properties.
    Tian S; Zhang Y; Zeng D; Wang H; Li N; Xie C; Pan C; Zhao X
    Phys Chem Chem Phys; 2015 Nov; 17(41):27437-45. PubMed ID: 26421631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rare-earth-doped indium oxide nanosphere-based gas sensor for highly sensitive formaldehyde detection at a low temperature.
    Ma X; Zhu H; Yu L; Li X; Ye E; Li Z; Loh XJ; Wang S
    Nanoscale; 2023 Jan; 15(4):1609-1618. PubMed ID: 36602001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen vacancies induced by lanthanum-doped indium oxide nanofibers for promoted temperature-dependent triethylamine and formaldehyde sensing.
    Miao J; Li X; Fan Y; Zhu S; Wang W; Fan H
    J Hazard Mater; 2024 Mar; 465():133148. PubMed ID: 38056275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Fe Doped ZnO Nanowire Arrays that Detect Formaldehyde Gas.
    Jeon YS; Seo HW; Kim SH; Kim YK
    J Nanosci Nanotechnol; 2016 May; 16(5):4814-9. PubMed ID: 27483827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enhanced formaldehyde-sensing properties of P3HT-ZnO hybrid thin film OTFT sensor and further insight into its stability.
    Tai H; Li X; Jiang Y; Xie G; Du X
    Sensors (Basel); 2015 Jan; 15(1):2086-103. PubMed ID: 25608214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Mg doping on the morphology and optical properties of ZnO films for enhanced H₂ sensing.
    Vijayalakshmi K; Karthick K
    Microsc Res Tech; 2013 Nov; 76(11):1118-24. PubMed ID: 23934625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/TiO2 nanoparticles heterojunction composites.
    Zou CW; Wang J; Xie W
    J Colloid Interface Sci; 2016 Sep; 478():22-8. PubMed ID: 27280536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PdO/PdO
    Lupan O; Postica V; Hoppe M; Wolff N; Polonskyi O; Pauporté T; Viana B; Majérus O; Kienle L; Faupel F; Adelung R
    Nanoscale; 2018 Aug; 10(29):14107-14127. PubMed ID: 29999088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step Synthesis of Co-Doped In
    Wang Z; Hou C; De Q; Gu F; Han D
    ACS Sens; 2018 Feb; 3(2):468-475. PubMed ID: 29350520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A density functional study on the formaldehyde recognition by Al-doped ZnO nanosheet.
    Fang Y; Yang DD; Xiang CY; Shi M; Zhao H; Asadi H
    J Mol Graph Model; 2020 Sep; 99():107630. PubMed ID: 32408250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pd-Functionalized ZnO:Eu Columnar Films for Room-Temperature Hydrogen Gas Sensing: A Combined Experimental and Computational Approach.
    Lupan C; Khaledialidusti R; Mishra AK; Postica V; Terasa MI; Magariu N; Pauporté T; Viana B; Drewes J; Vahl A; Faupel F; Adelung R
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24951-24964. PubMed ID: 32367706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites.
    Huang Q; Zeng D; Li H; Xie C
    Nanoscale; 2012 Sep; 4(18):5651-8. PubMed ID: 22868941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of Highly Sensitive Formaldehyde Sensors Based on ZnO/CuO Heterostructure via the Sol-Gel Method.
    Liu J; Chen Y; Zhang H
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low Working Temperature of ZnO-MoS
    Wang S; Chen W; Li J; Song Z; Zhang H; Zeng W
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32977597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Gas Sensing Properties of Spin-coated Na-doped ZnO Nanostructured Films.
    Basyooni MA; Shaban M; El Sayed AM
    Sci Rep; 2017 Feb; 7():41716. PubMed ID: 28145506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of high-sensitivity La-doped ZnO sensors for CO
    Abdelkarem K; Saad R; El Sayed AM; Fathy MI; Shaban M; Hamdy H
    Sci Rep; 2023 Oct; 13(1):18398. PubMed ID: 37884608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorine gas reaction with ZnO wurtzoid nanocrystals as a function of temperature: a DFT study.
    Abdulsattar MA
    J Mol Model; 2017 Apr; 23(4):125. PubMed ID: 28316040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving sensing of formaldehyde using ZnO nanostructures with surface-adsorbed oxygen.
    Tawfik SA; Tran H; Spencer MJS
    Nanoscale Adv; 2022 Jan; 4(2):546-561. PubMed ID: 36132703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-platelet Pd@ZnO microcrystals for NO
    Zhang YH; Li YL; Gong FL; Xie KF; Zhang HL; Fang SM
    Phys Chem Chem Phys; 2019 Oct; 21(39):22039-22047. PubMed ID: 31559992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled fabrication of oriented co-doped ZnO clustered nanoassemblies.
    Barick KC; Aslam M; Dravid VP; Bahadur D
    J Colloid Interface Sci; 2010 Sep; 349(1):19-26. PubMed ID: 20621804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.