These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26421747)

  • 61. Bond Energies and Thermochemical Properties of Ring-Opened Diradicals and Carbenes of exo-Tricyclo[5.2.1.0(2,6)]decane.
    Hudzik JM; Castillo Á; Bozzelli JW
    J Phys Chem A; 2015 Sep; 119(38):9857-78. PubMed ID: 26295335
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enthalpies of formation and bond dissociation energies of lower alkyl hydroperoxides and related hydroperoxy and alkoxy radicals.
    Simmie JM; Black G; Curran HJ; Hinde JP
    J Phys Chem A; 2008 Jun; 112(22):5010-6. PubMed ID: 18461912
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Thermochemical properties of exo-tricyclo[5.2.1.0(2,6)]decane (JP-10 jet fuel) and derived tricyclodecyl radicals.
    Hudzik JM; Asatryan R; Bozzelli JW
    J Phys Chem A; 2010 Sep; 114(35):9545-53. PubMed ID: 20712369
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Consistent theoretical description of 1,3-dipolar cycloaddition reactions.
    Grimme S; Mück-Lichtenfeld C; Würthwein EU; Ehlers AW; Goumans TP; Lammertsma K
    J Phys Chem A; 2006 Mar; 110(8):2583-6. PubMed ID: 16494365
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Energetics of cresols and of methylphenoxyl radicals.
    Richard LS; Bernardes CE; Diogo HP; Leal JP; da Piedade ME
    J Phys Chem A; 2007 Sep; 111(35):8741-8. PubMed ID: 17691757
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Thermochemical properties, DeltafH degrees (298), S degrees (298), and Cp degrees (T), for n-butyl and n-pentyl hydroperoxides and the alkyl and peroxy radicals, transition states, and kinetics for intramolecular hydrogen shift reactions of the peroxy radicals.
    Zhu L; Bozzelli JW; Kardos LM
    J Phys Chem A; 2007 Jul; 111(28):6361-77. PubMed ID: 17585739
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.
    Guo J; Xu J; Li Z; Tan N; Li X
    J Phys Chem A; 2015 Apr; 119(13):3161-70. PubMed ID: 25774424
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Atom-based thermochemistry: predictions of the sublimation enthalpies of group 12 chalcogenides and the formation enthalpies of their polonides.
    von Szentpály L
    J Phys Chem A; 2008 Dec; 112(49):12695-701. PubMed ID: 19053542
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modeling the gas-phase thermochemistry of organosulfur compounds.
    Vandeputte AG; Sabbe MK; Reyniers MF; Marin GB
    Chemistry; 2011 Jun; 17(27):7656-73. PubMed ID: 21608056
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Thermochemistry of acetonyl and related radicals.
    El-Nahas AM; Bozzelli JW; Simmie JM; Navarro MV; Black G; Curran HJ
    J Phys Chem A; 2006 Dec; 110(50):13618-23. PubMed ID: 17165890
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
    Ruscic B
    J Phys Chem A; 2015 Jul; 119(28):7810-37. PubMed ID: 25760799
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The correlation consistent composite approach (ccCA): an alternative to the Gaussian-n methods.
    DeYonker NJ; Cundari TR; Wilson AK
    J Chem Phys; 2006 Mar; 124(11):114104. PubMed ID: 16555871
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Accurate prediction of enthalpies of formation of organic azides by combining G4 theory calculations with an isodesmic reaction scheme.
    Dorofeeva OV; Ryzhova ON; Suntsova MA
    J Phys Chem A; 2013 Aug; 117(31):6835-45. PubMed ID: 23834503
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhanced enthalpies of formation from density functional theory through molecular reference states.
    Brothers EN; Scuseria GE
    J Phys Chem A; 2008 Dec; 112(51):13706-11. PubMed ID: 19032054
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Computational benchmark for calculation of silane and siloxane thermochemistry.
    Cypryk M; Gostyński B
    J Mol Model; 2016 Jan; 22(1):35. PubMed ID: 26781663
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Thermochemical Properties: Enthalpy, Entropy, and Heat Capacity of C2-C3 Fluorinated Aldehydes. Radicals and Fluorocarbon Group Additivity.
    Purnell DL; Bozzelli JW
    J Phys Chem A; 2019 Jan; 123(3):650-665. PubMed ID: 30511860
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Thermochemical properties for isooctane and carbon radicals: computational study.
    Snitsiriwat S; Bozzelli JW
    J Phys Chem A; 2013 Jan; 117(2):421-9. PubMed ID: 23234386
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Theoretical study of the thermodynamics and kinetics of hydrogen abstractions from hydrocarbons.
    Vandeputte AG; Sabbe MK; Reyniers MF; Van Speybroeck V; Waroquier M; Marin GB
    J Phys Chem A; 2007 Nov; 111(46):11771-86. PubMed ID: 17966994
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Accurate quantum chemical energies for 133 000 organic molecules.
    Narayanan B; Redfern PC; Assary RS; Curtiss LA
    Chem Sci; 2019 Aug; 10(31):7449-7455. PubMed ID: 31489167
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Accurate ab initio predictions of ionization energies and heats of formation for the 2-propyl, phenyl, and benzyl radicals.
    Lau KC; Ng CY
    J Chem Phys; 2006 Jan; 124(4):044323. PubMed ID: 16460178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.