These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 26421945)

  • 1. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.
    Edwards DT; Faulk JK; Sanders AW; Bull MS; Walder R; LeBlanc MA; Sousa MC; Perkins TT
    Nano Lett; 2015 Oct; 15(10):7091-8. PubMed ID: 26421945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing force spectroscopy by modifying commercial cantilevers: Improved stability, precision, and temporal resolution.
    Edwards DT; Perkins TT
    J Struct Biol; 2017 Jan; 197(1):13-25. PubMed ID: 26804584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Force Spectroscopy Using Focused-Ion-Beam-Modified Cantilevers.
    Faulk JK; Edwards DT; Bull MS; Perkins TT
    Methods Enzymol; 2017; 582():321-351. PubMed ID: 28062041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force Spectroscopy with 9-μs Resolution and Sub-pN Stability by Tailoring AFM Cantilever Geometry.
    Edwards DT; Faulk JK; LeBlanc MA; Perkins TT
    Biophys J; 2017 Dec; 113(12):2595-2600. PubMed ID: 29132641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved single molecule force spectroscopy using micromachined cantilevers.
    Bull MS; Sullan RM; Li H; Perkins TT
    ACS Nano; 2014 May; 8(5):4984-95. PubMed ID: 24670198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Precision Single-Molecule Characterization of the Folding of an HIV RNA Hairpin by Atomic Force Microscopy.
    Walder R; Van Patten WJ; Ritchie DB; Montange RK; Miller TW; Woodside MT; Perkins TT
    Nano Lett; 2018 Oct; 18(10):6318-6325. PubMed ID: 30234311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlaboratory round robin on cantilever calibration for AFM force spectroscopy.
    te Riet J; Katan AJ; Rankl C; Stahl SW; van Buul AM; Phang IY; Gomez-Casado A; Schön P; Gerritsen JW; Cambi A; Rowan AE; Vancso GJ; Jonkheijm P; Huskens J; Oosterkamp TH; Gaub H; Hinterdorfer P; Figdor CG; Speller S
    Ultramicroscopy; 2011 Dec; 111(12):1659-69. PubMed ID: 22094372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM.
    Sarangapani K; Torun H; Finkler O; Zhu C; Degertekin L
    Eur Biophys J; 2010 Jul; 39(8):1219-27. PubMed ID: 20054686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Resolution AFM-Based Force Spectroscopy.
    Sigdel KP; Pittman AE; Matin TR; King GM
    Methods Mol Biol; 2018; 1814():49-62. PubMed ID: 29956226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy.
    Walder R; Van Patten WJ; Adhikari A; Perkins TT
    ACS Nano; 2018 Jan; 12(1):198-207. PubMed ID: 29244486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of a protein-folding landscape revealed by AFM-based force spectroscopy notwithstanding instrumental limitations.
    Edwards DT; LeBlanc MA; Perkins TT
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force Spectroscopy of Single Protein Molecules Using an Atomic Force Microscope.
    Scholl ZN; Li Q; Josephs E; Apostolidou D; Marszalek PE
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30882788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AFM-Based Single-Molecule Force Spectroscopy of Proteins.
    Scholl ZN; Marszalek PE
    Methods Mol Biol; 2018; 1814():35-47. PubMed ID: 29956225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histidine-Specific Bioconjugation for Single-Molecule Force Spectroscopy.
    Lei H; Zhang J; Li Y; Wang X; Qin M; Wang W; Cao Y
    ACS Nano; 2022 Sep; 16(9):15440-15449. PubMed ID: 35980082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics.
    Verdorfer T; Bernardi RC; Meinhold A; Ott W; Luthey-Schulten Z; Nash MA; Gaub HE
    J Am Chem Soc; 2017 Dec; 139(49):17841-17852. PubMed ID: 29058444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy with sub-picoNewton force stability for biological applications.
    Sullan RM; Churnside AB; Nguyen DM; Bull MS; Perkins TT
    Methods; 2013 Apr; 60(2):131-41. PubMed ID: 23562681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Speed Force Spectroscopy for Single Protein Unfolding.
    Sumbul F; Marchesi A; Takahashi H; Scheuring S; Rico F
    Methods Mol Biol; 2018; 1814():243-264. PubMed ID: 29956237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.
    Sapra KT
    Methods Mol Biol; 2013; 974():73-110. PubMed ID: 23404273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased imaging speed and force sensitivity for bio-applications with small cantilevers using a conventional AFM setup.
    Leitner M; Fantner GE; Fantner EJ; Ivanova K; Ivanov T; Rangelow I; Ebner A; Rangl M; Tang J; Hinterdorfer P
    Micron; 2012 Dec; 43(12):1399-407. PubMed ID: 22721963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.
    Rivera M; Lee W; Ke C; Marszalek PE; Cole DG; Clark RL
    Biophys J; 2008 Oct; 95(8):3991-8. PubMed ID: 18641069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.