These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 26422081)
21. [Nitrogen fixation potential of biological soil crusts in southeast edge of Tengger Desert, Northwest China]. Zhang P; Li XR; Zhang ZS; Pan YX; Liu YM; Su JQ Ying Yong Sheng Tai Xue Bao; 2012 Aug; 23(8):2157-64. PubMed ID: 23189693 [TBL] [Abstract][Full Text] [Related]
22. Simulated soil crust conditions in a chamber system provide new insights on cyanobacterial acclimation to desiccation. Raanan H; Oren N; Treves H; Berkowicz SM; Hagemann M; Pade N; Keren N; Kaplan A Environ Microbiol; 2016 Feb; 18(2):414-26. PubMed ID: 26234786 [TBL] [Abstract][Full Text] [Related]
23. Photosynthesis in extreme environments: responses to different light regimes in the Antarctic alga Koliella antarctica. La Rocca N; Sciuto K; Meneghesso A; Moro I; Rascio N; Morosinotto T Physiol Plant; 2015 Apr; 153(4):654-67. PubMed ID: 25186023 [TBL] [Abstract][Full Text] [Related]
24. Response of desert biological soil crusts to alterations in precipitation frequency. Belnap J; Phillips SL; Miller ME Oecologia; 2004 Oct; 141(2):306-16. PubMed ID: 14689292 [TBL] [Abstract][Full Text] [Related]
25. Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Gray DW; Lewis LA; Cardon ZG Plant Cell Environ; 2007 Oct; 30(10):1240-55. PubMed ID: 17727415 [TBL] [Abstract][Full Text] [Related]
26. Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts. Wu L; Lei Y; Lan S; Hu C PLoS One; 2017; 12(3):e0172537. PubMed ID: 28257469 [TBL] [Abstract][Full Text] [Related]
27. Enhanced Desiccation Tolerance in Mature Cultures of the Streptophytic Green Alga Zygnema circumcarinatum Revealed by Transcriptomics. Rippin M; Becker B; Holzinger A Plant Cell Physiol; 2017 Dec; 58(12):2067-2084. PubMed ID: 29036673 [TBL] [Abstract][Full Text] [Related]
28. Reading and surviving the harsh conditions in desert biological soil crust: the cyanobacterial viewpoint. Xu HF; Raanan H; Dai GZ; Oren N; Berkowicz S; Murik O; Kaplan A; Qiu BS FEMS Microbiol Rev; 2021 Nov; 45(6):. PubMed ID: 34165541 [TBL] [Abstract][Full Text] [Related]
29. The green alga Zygogonium ericetorum (Zygnematophyceae, Charophyta) shows high iron and aluminium tolerance: protection mechanisms and photosynthetic performance. Herburger K; Remias D; Holzinger A FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27178434 [TBL] [Abstract][Full Text] [Related]
30. [Development and succession of biological soil crusts and the changes of microbial biomasses]. Wu L; Zhang GK; Chen XG; Lan SB; Zhang DL; Hu CX Huan Jing Ke Xue; 2014 Apr; 35(4):1479-85. PubMed ID: 24946606 [TBL] [Abstract][Full Text] [Related]
31. Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Büdel B; Darienko T; Deutschewitz K; Dojani S; Friedl T; Mohr KI; Salisch M; Reisser W; Weber B Microb Ecol; 2009 Feb; 57(2):229-47. PubMed ID: 18850242 [TBL] [Abstract][Full Text] [Related]
32. [Greenhouse gases fluxes of biological soil crusts and soil ecosystem in the artificial sand-fixing vegetation region in Shapotou area]. Hu YG; Feng YL; Zhang ZS; Huang L; Zhang P; Xu BX Ying Yong Sheng Tai Xue Bao; 2014 Jan; 25(1):61-8. PubMed ID: 24765843 [TBL] [Abstract][Full Text] [Related]
33. A new microscopic method to analyse desiccation-induced volume changes in aeroterrestrial green algae. Lajos K; Mayr S; Buchner O; Blaas K; Holzinger A J Microsc; 2016 Aug; 263(2):192-9. PubMed ID: 27075881 [TBL] [Abstract][Full Text] [Related]
34. Ultrastructure of Cosmarium strains (Zygnematophyceae, Streptophyta) collected from various geographic locations shows species-specific differences both at optimal and stress temperatures. Stamenković M; Woelken E; Hanelt D Protoplasma; 2014 Nov; 251(6):1491-509. PubMed ID: 24802109 [TBL] [Abstract][Full Text] [Related]
35. Desert cyanobacteria prepare in advance for dehydration and rewetting: The role of light and temperature sensing. Oren N; Raanan H; Kedem I; Turjeman A; Bronstein M; Kaplan A; Murik O Mol Ecol; 2019 May; 28(9):2305-2320. PubMed ID: 31025457 [TBL] [Abstract][Full Text] [Related]
36. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. Rajeev L; da Rocha UN; Klitgord N; Luning EG; Fortney J; Axen SD; Shih PM; Bouskill NJ; Bowen BP; Kerfeld CA; Garcia-Pichel F; Brodie EL; Northen TR; Mukhopadhyay A ISME J; 2013 Nov; 7(11):2178-91. PubMed ID: 23739051 [TBL] [Abstract][Full Text] [Related]
37. Comparison of cyanobacterial communities in temperate deserts: A cue for artificial inoculation of biological soil crusts. Wang J; Zhang P; Bao JT; Zhao JC; Song G; Yang HT; Huang L; He MZ; Li XR Sci Total Environ; 2020 Nov; 745():140970. PubMed ID: 32731072 [TBL] [Abstract][Full Text] [Related]
38. Desiccation provides photosynthetic protection for crust cyanobacteria Microcoleus vaginatus from high temperature. Lan S; Wu L; Zhang D; Hu C Physiol Plant; 2014 Oct; 152(2):345-54. PubMed ID: 24611508 [TBL] [Abstract][Full Text] [Related]
39. What distinguishes cyanobacteria able to revive after desiccation from those that cannot: the genome aspect. Murik O; Oren N; Shotland Y; Raanan H; Treves H; Kedem I; Keren N; Hagemann M; Pade N; Kaplan A Environ Microbiol; 2017 Feb; 19(2):535-550. PubMed ID: 27501380 [TBL] [Abstract][Full Text] [Related]
40. Diversity and dispersal capacities of a terrestrial algal genus Klebsormidium (Streptophyta) in polar regions. Ryšánek D; Elster J; Kováčik L; Škaloud P FEMS Microbiol Ecol; 2016 Apr; 92(4):fnw039. PubMed ID: 26906099 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]