These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26422317)

  • 1. Cyclic Deformation in Metallic Glasses.
    Sha ZD; Qu SX; Liu ZS; Wang TJ; Gao H
    Nano Lett; 2015 Oct; 15(10):7010-5. PubMed ID: 26422317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass.
    Wang CC; Mao YW; Shan ZW; Dao M; Li J; Sun J; Ma E; Suresh S
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):19725-30. PubMed ID: 24255113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear Band Evolution under Cyclic Loading and Fatigue Property in Metallic Glasses: A Brief Review.
    Wang X; Wu S; Qu R; Zhang Z
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34203127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear-Transformation Zone Activation during Loading and Unloading in Nanoindentation of Metallic Glasses.
    Avila KE; Küchemann S; Alabd Alhafez I; Urbassek HM
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31067772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the Hydrogen Doping Method on the Atomic Structure, Mechanical Properties and Relaxation Behaviors of Metallic Glasses.
    Zhang J; Gao P; Zhang W
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Study on the Fatigue Limit of Metallic Glasses under Cyclic Tension-Compression Loading.
    Yan J; Meng W; Chen Z; Guo H; Yan X
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32276314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation.
    He J; Kaban I; Mattern N; Song K; Sun B; Zhao J; Kim do H; Eckert J; Greer AL
    Sci Rep; 2016 May; 6():25832. PubMed ID: 27181922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Critical Criterion on Runaway Shear Banding in Metallic Glasses.
    Sun BA; Yang Y; Wang WH; Liu CT
    Sci Rep; 2016 Feb; 6():21388. PubMed ID: 26893196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic arrangement in CuZr-based metallic glass composites under tensile deformation.
    Hao H; Zhou W; Lu Y; Lau D
    Phys Chem Chem Phys; 2019 Dec; 22(1):313-324. PubMed ID: 31815258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D surface condensation of large atomic shear strain in nanoscale metallic glasses under low uniaxial stress.
    Chen F; Xu D
    J Phys Condens Matter; 2019 Jan; 31(2):025401. PubMed ID: 30521488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain Distribution Across an Individual Shear Band in Real and Simulated Metallic Glasses.
    Scudino S; Şopu D
    Nano Lett; 2018 Feb; 18(2):1221-1227. PubMed ID: 29336568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation-Induced Crystal Growth or Redissolution, and Crystal-Induced Strengthening or Ductilization in Metallic Glasses Containing Nanocrystals.
    Thaiyanurak T; Soonthornkit S; Gordon O; Feng Z; Xu D
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of atomic rearrangements in deformation in metallic glasses.
    Shang BS; Li MZ; Yao YG; Lu YJ; Wang WH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042303. PubMed ID: 25375490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study.
    Zhong C; Zhang H; Cao QP; Wang XD; Zhang DX; Ramamurty U; Jiang JZ
    Sci Rep; 2016 Aug; 6():30935. PubMed ID: 27480496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering the Inherent Size Dependence of Yield Strength and Failure Mechanism in Micron-Sized Metallic Glass.
    Teng Y; Sha ZD
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhomogeneity of Free Volumes in Metallic Glasses under Tension.
    Da W; Wang PW; Wang YF; Li MF; Yang L
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30597950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tension-Tension Fatigue Behavior of High-Toughness Zr
    Yang YH; Yi J; Yang N; Liang W; Huang HR; Huang B; Jia YD; Bian XL; Wang G
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34070483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of loading methods on the microstructural evolution and degree of strain localization in Cu
    Katakareddi G; Yedla N
    J Mol Graph Model; 2022 Sep; 115():108216. PubMed ID: 35609441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass.
    Pan J; Ivanov YP; Zhou WH; Li Y; Greer AL
    Nature; 2020 Feb; 578(7796):559-562. PubMed ID: 32103194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Necking and notch strengthening in metallic glass with symmetric sharp-and-deep notches.
    Sha ZD; Pei QX; Liu ZS; Zhang YW; Wang TJ
    Sci Rep; 2015 May; 5():10797. PubMed ID: 26022224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.