These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26422317)

  • 21. Dilatancy induced ductile-brittle transition of shear band in metallic glasses.
    Zeng F; Jiang MQ; Dai LH
    Proc Math Phys Eng Sci; 2018 Apr; 474(2212):20170836. PubMed ID: 29740259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct in situ observation of metallic glass deformation by real-time nano-scale indentation.
    Gu L; Xu L; Zhang Q; Pan D; Chen N; Louzguine-Luzgin DV; Yao KF; Wang W; Ikuhara Y
    Sci Rep; 2015 Mar; 5():9122. PubMed ID: 25773051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unusually thick shear-softening surface of micrometer-size metallic glasses.
    Dong J; Huan Y; Huang B; Yi J; Liu YH; Sun BA; Wang WH; Bai HY
    Innovation (Camb); 2021 May; 2(2):100106. PubMed ID: 34557757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasticity of ductile metallic glasses: a self-organized critical state.
    Sun BA; Yu HB; Jiao W; Bai HY; Zhao DQ; Wang WH
    Phys Rev Lett; 2010 Jul; 105(3):035501. PubMed ID: 20867777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recreating the shear band evolution in nanoscale metallic glass by mimicking the atomistic rolling deformation: a molecular dynamics study.
    Reddy KV; Pal S
    J Mol Model; 2021 Jul; 27(8):220. PubMed ID: 34232386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation between structural heterogeneity and plastic deformation for phase separating FeCu metallic glasses.
    Peng CX; Song KK; Wang L; Şopu D; Pauly S; Eckert J
    Sci Rep; 2016 Sep; 6():34340. PubMed ID: 27681052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The shear band controlled deformation in metallic glass: a perspective from fracture.
    Yang GN; Shao Y; Yao KF
    Sci Rep; 2016 Feb; 6():21852. PubMed ID: 26899145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomic-Level Processes of Shear Band Nucleation in Metallic Glasses.
    Şopu D; Stukowski A; Stoica M; Scudino S
    Phys Rev Lett; 2017 Nov; 119(19):195503. PubMed ID: 29219492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural evolution of nanoscale metallic glasses during high-pressure torsion: A molecular dynamics analysis.
    Feng SD; Jiao W; Jing Q; Qi L; Pan SP; Li G; Ma MZ; Wang WH; Liu RP
    Sci Rep; 2016 Nov; 6():36627. PubMed ID: 27819352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural relaxation affecting shear-transformation avalanches in metallic glasses.
    Niiyama T; Wakeda M; Shimokawa T; Ogata S
    Phys Rev E; 2019 Oct; 100(4-1):043002. PubMed ID: 31770901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A nanoscale study of the negative strain rate dependency of the strength of metallic glasses by molecular dynamics simulations.
    Yang L; Fan J; Vu-Bac N; Rabczuk T
    Phys Chem Chem Phys; 2018 Nov; 20(41):26552-26557. PubMed ID: 30306983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass.
    Shen LQ; Luo P; Hu YC; Bai HY; Sun YH; Sun BA; Liu YH; Wang WH
    Nat Commun; 2018 Oct; 9(1):4414. PubMed ID: 30356051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gaining sight after being blind: A tribute to Jing Zhu.
    De Hosson JTM
    Ultramicroscopy; 2018 Sep; 192():37-49. PubMed ID: 29886161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chiral metallic glass nanolattices with combined lower density and improved auxeticity.
    Chen Z; Liu H; Li W; Mo J; Wang M; Zhang Y; Li J; Jiang Q; Yang W; Tang C
    Phys Chem Chem Phys; 2019 Oct; 21(37):20588-20594. PubMed ID: 31237283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass.
    Pekin TC; Ding J; Gammer C; Ozdol B; Ophus C; Asta M; Ritchie RO; Minor AM
    Nat Commun; 2019 Jun; 10(1):2445. PubMed ID: 31164643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Composition-dependent effects of oxygen on atomic structure and mechanical properties of metallic glasses.
    Guo KF; Zhang JC; Sha ZD; Pei QX
    Phys Chem Chem Phys; 2021 Jan; 23(2):1335-1342. PubMed ID: 33367358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plastic Behavior of Metallic Damping Materials under Cyclical Shear Loading.
    Zhang C; Wang L; Wu M; Zhao J
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brittle-to-Ductile Transition in Metallic Glass Nanowires.
    Şopu D; Foroughi A; Stoica M; Eckert J
    Nano Lett; 2016 Jul; 16(7):4467-71. PubMed ID: 27248329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unveiling the Local Atomic Arrangements in the Shear Band Regions of Metallic Glass.
    Mu X; Chellali MR; Boltynjuk E; Gunderov D; Valiev RZ; Hahn H; Kübel C; Ivanisenko Y; Velasco L
    Adv Mater; 2021 Mar; 33(12):e2007267. PubMed ID: 33604975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ study of nano-cracking in multilayered magnetic tapes under monotonic and fatigue loading using an AFM.
    Tambe NS; Bhushan B
    Ultramicroscopy; 2004 Aug; 100(3-4):359-73. PubMed ID: 15231330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.