These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26422457)

  • 21. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency.
    Sahli F; Werner J; Kamino BA; Bräuninger M; Monnard R; Paviet-Salomon B; Barraud L; Ding L; Diaz Leon JJ; Sacchetto D; Cattaneo G; Despeisse M; Boccard M; Nicolay S; Jeangros Q; Niesen B; Ballif C
    Nat Mater; 2018 Sep; 17(9):820-826. PubMed ID: 29891887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells.
    Avasthi S; Lee S; Loo YL; Sturm JC
    Adv Mater; 2011 Dec; 23(48):5762-6. PubMed ID: 22109841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation between in Situ Diagnostics of the Hydrogen Plasma and the Interface Passivation Quality of Hydrogen Plasma Post-Treated a-Si:H in Silicon Heterojunction Solar Cells.
    Soman A; Nsofor U; Das U; Gu T; Hegedus S
    ACS Appl Mater Interfaces; 2019 May; 11(17):16181-16190. PubMed ID: 30951278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.
    Wang F; Zhang X; Wang L; Jiang Y; Wei C; Xu S; Zhao Y
    Phys Chem Chem Phys; 2014 Oct; 16(37):20202-8. PubMed ID: 25138166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hexagonal Boron Nitride for Surface Passivation of Two-Dimensional van der Waals Heterojunction Solar Cells.
    Cho AJ; Kwon JY
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39765-39771. PubMed ID: 31577117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells.
    Lokar Z; Lipovsek B; Topic M; Krc J
    Beilstein J Nanotechnol; 2018; 9():2315-2329. PubMed ID: 30202700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study on modification of single-walled carbon nanotubes on the surface of monocrystalline silicon solar cells.
    Gong T; Zhu Y; Xie W; Wang N; Zhang J; Ren W
    Appl Opt; 2014 Oct; 53(28):6457-63. PubMed ID: 25322233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular bulk heterojunctions: an emerging approach to organic solar cells.
    Roncali J
    Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes.
    Shu Q; Wei J; Wang K; Zhu H; Li Z; Jia Y; Gui X; Guo N; Li X; Ma C; Wu D
    Nano Lett; 2009 Dec; 9(12):4338-42. PubMed ID: 19852483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells.
    Wong TKS; Zhuk S; Masudy-Panah S; Dalapati GK
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon Nanotube-Silicon Nanowire Heterojunction Solar Cells with Gas-Dependent Photovoltaic Performances and Their Application in Self-Powered NO2 Detecting.
    Jia Y; Zhang Z; Xiao L; Lv R
    Nanoscale Res Lett; 2016 Dec; 11(1):299. PubMed ID: 27299654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silicon Nanowire Heterojunction Solar Cells with an Al
    Kato S; Kurokawa Y; Gotoh K; Soga T
    Nanoscale Res Lett; 2019 Mar; 14(1):99. PubMed ID: 30877482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal-Free Carbon-Based Nanomaterial Coatings Protect Silicon Photoanodes in Solar Water-Splitting.
    Yoon K; Lee JH; Kang J; Kang J; Moody MJ; Hersam MC; Lauhon LJ
    Nano Lett; 2016 Dec; 16(12):7370-7375. PubMed ID: 27960516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Material and Interface Engineering for High-Performance Perovskite Solar Cells: A Personal Journey and Perspective.
    Qiu J; Yang S
    Chem Rec; 2020 Mar; 20(3):209-229. PubMed ID: 31368664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential of PEDOT:PSS as a hole selective front contact for silicon heterojunction solar cells.
    Jäckle S; Liebhaber M; Gersmann C; Mews M; Jäger K; Christiansen S; Lips K
    Sci Rep; 2017 May; 7(1):2170. PubMed ID: 28526863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications.
    Zhong J; Zhang H; Sun X; Lee ST
    Adv Mater; 2014 Dec; 26(46):7786-806. PubMed ID: 25204894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High efficiency graphene solar cells by chemical doping.
    Miao X; Tongay S; Petterson MK; Berke K; Rinzler AG; Appleton BR; Hebard AF
    Nano Lett; 2012 Jun; 12(6):2745-50. PubMed ID: 22554195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.
    Li C; Cao Q; Wang F; Xiao Y; Li Y; Delaunay JJ; Zhu H
    Chem Soc Rev; 2018 Jul; 47(13):4981-5037. PubMed ID: 29736528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advances in solar energy harvesting integrated by van der Waals graphene heterojunctions.
    Le TK; Mai TH; Iqbal MA; Vernardou D; Dao VD; Ponnusamy VK; Rout CS; Pham PV
    RSC Adv; 2023 Oct; 13(44):31273-31291. PubMed ID: 37901851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.