These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 26422816)
1. Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems. Migocka M IUBMB Life; 2015 Oct; 67(10):737-45. PubMed ID: 26422816 [TBL] [Abstract][Full Text] [Related]
2. Cellular multitasking: the dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance. Lutsenko S; Gupta A; Burkhead JL; Zuzel V Arch Biochem Biophys; 2008 Aug; 476(1):22-32. PubMed ID: 18534184 [TBL] [Abstract][Full Text] [Related]
3. Function and regulation of human copper-transporting ATPases. Lutsenko S; Barnes NL; Bartee MY; Dmitriev OY Physiol Rev; 2007 Jul; 87(3):1011-46. PubMed ID: 17615395 [TBL] [Abstract][Full Text] [Related]
4. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Raimunda D; González-Guerrero M; Leeber BW; Argüello JM Biometals; 2011 Jun; 24(3):467-75. PubMed ID: 21210186 [TBL] [Abstract][Full Text] [Related]
5. HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. Seigneurin-Berny D; Gravot A; Auroy P; Mazard C; Kraut A; Finazzi G; Grunwald D; Rappaport F; Vavasseur A; Joyard J; Richaud P; Rolland N J Biol Chem; 2006 Feb; 281(5):2882-92. PubMed ID: 16282320 [TBL] [Abstract][Full Text] [Related]
6. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases. Jordan IK; Natale DA; Koonin EV; Galperin MY J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622 [TBL] [Abstract][Full Text] [Related]
7. Structural organization of human Cu-transporting ATPases: learning from building blocks. Barry AN; Shinde U; Lutsenko S J Biol Inorg Chem; 2010 Jan; 15(1):47-59. PubMed ID: 19851794 [TBL] [Abstract][Full Text] [Related]
8. Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus. Chintalapati S; Al Kurdi R; van Scheltinga AC; Kühlbrandt W J Mol Biol; 2008 May; 378(3):581-95. PubMed ID: 18374940 [TBL] [Abstract][Full Text] [Related]
11. P(1B)-ATPases--an ancient family of transition metal pumps with diverse functions in plants. Williams LE; Mills RF Trends Plant Sci; 2005 Oct; 10(10):491-502. PubMed ID: 16154798 [TBL] [Abstract][Full Text] [Related]
12. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117 [TBL] [Abstract][Full Text] [Related]
13. Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases. Mandal AK; Yang Y; Kertesz TM; Argüello JM J Biol Chem; 2004 Dec; 279(52):54802-7. PubMed ID: 15494391 [TBL] [Abstract][Full Text] [Related]
14. A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942. Kanamaru K; Kashiwagi S; Mizuno T Mol Microbiol; 1994 Jul; 13(2):369-77. PubMed ID: 7984114 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. González-Guerrero M; Argüello JM Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453 [TBL] [Abstract][Full Text] [Related]
16. Toward a molecular understanding of metal transport by P(1B)-type ATPases. Rosenzweig AC; Argüello JM Curr Top Membr; 2012; 69():113-36. PubMed ID: 23046649 [TBL] [Abstract][Full Text] [Related]
17. A mutational study in the transmembrane domain of Ccc2p, the yeast Cu(I)-ATPase, shows different roles for each Cys-Pro-Cys cysteine. Lowe J; Vieyra A; Catty P; Guillain F; Mintz E; Cuillel M J Biol Chem; 2004 Jun; 279(25):25986-94. PubMed ID: 15078884 [TBL] [Abstract][Full Text] [Related]
18. The structure and function of heavy metal transport P1B-ATPases. Argüello JM; Eren E; González-Guerrero M Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF. Padilla-Benavides T; George Thompson AM; McEvoy MM; Argüello JM J Biol Chem; 2014 Jul; 289(30):20492-501. PubMed ID: 24917681 [TBL] [Abstract][Full Text] [Related]
20. Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+ -Transporting ATPase along the Ion Transport Cycle. Meng D; Bruschweiler-Li L; Zhang F; Brüschweiler R Biochemistry; 2015 Aug; 54(32):5095-102. PubMed ID: 26196187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]