These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26422924)

  • 21. Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils.
    Yao HY; Liu YY; Xue D; Huang CY
    J Environ Sci (China); 2006; 18(3):503-9. PubMed ID: 17294647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sterols and fatty acid biomarkers as indicators of changes in soil microbial communities in a uranium mine area.
    Guedes MJ; Pereira R; Duarte K; Rocha-Santos TA; Antunes SC; Gonçalves F; Duarte AC; Freitas AC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(6):659-68. PubMed ID: 21547821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copper (II) lead (II), and zinc (II) reduce growth and zoospore release in four zoosporic true fungi from soils of NSW, Australia.
    Henderson L; Pilgaard B; Gleason FH; Lilje O
    Fungal Biol; 2015 Jul; 119(7):648-55. PubMed ID: 26058540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The homeostasis of the microbial communities in soils polluted by heavy metals].
    Andreiuk EI; Iutinskaia GA; Petrusha ZV
    Mikrobiol Z; 1999; 61(6):15-21. PubMed ID: 10733279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area.
    Liao M; Chen CL; Huang CY
    J Environ Sci (China); 2005; 17(5):832-7. PubMed ID: 16313013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil.
    Dell'Amico E; Mazzocchi M; Cavalca L; Allievi L; Andreoni V
    Microbiol Res; 2008; 163(6):671-83. PubMed ID: 17207985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial heavy metal resistance: new surprises.
    Silver S; Phung LT
    Annu Rev Microbiol; 1996; 50():753-89. PubMed ID: 8905098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+.
    Camargo FA; Okeke BC; Bento FM; Frankenberger WT
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):569-73. PubMed ID: 12679851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Synthesis of melanin pigments by Antarctic black yeast].
    Tashirev AB; Romanovskaia VA; Rokitko PV; Matveeva NA; Shilin SO; Tashireva AA
    Mikrobiol Z; 2012; 74(5):2-8. PubMed ID: 23120979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of diesel and interactions with copper and other metals in an estuarine sediment microbial community.
    Hedrick DB; Peacock AD; Tita G; Fleeger JW; Carman KR; White DC
    Environ Toxicol Chem; 2009 Nov; 28(11):2289-97. PubMed ID: 19580335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts.
    Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP
    J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metals affect soil bacterial and fungal functional diversity differently.
    Stefanowicz AM; Niklińska M; Laskowski R
    Environ Toxicol Chem; 2008 Mar; 27(3):591-8. PubMed ID: 17944550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The exposition of a calcareous Mediterranean soil to toxic concentrations of Cr, Cd and Pb produces changes in the microbiota mainly related to differential metal bioavailability.
    Caliz J; Montserrat G; Martí E; Sierra J; Cruañas R; Garau MA; Triadó-Margarit X; Vila X
    Chemosphere; 2012 Oct; 89(5):494-504. PubMed ID: 22658943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of microbial diversity in soils is coincident with reductions in some specialized functions.
    Singh BK; Quince C; Macdonald CA; Khachane A; Thomas N; Al-Soud WA; Sørensen SJ; He Z; White D; Sinclair A; Crooks B; Zhou J; Campbell CD
    Environ Microbiol; 2014 Aug; 16(8):2408-20. PubMed ID: 24422656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromium-resistant soil actinomycetes: their tolerance to other metals and antibiotics.
    Basu M; Paul AK
    Acta Microbiol Immunol Hung; 1999; 46(1):25-32. PubMed ID: 10331065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Newer systems for bacterial resistances to toxic heavy metals.
    Silver S; Ji G
    Environ Health Perspect; 1994 Sep; 102 Suppl 3(Suppl 3):107-13. PubMed ID: 7843081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microorganisms as indices of environmental pollution by smelting industry.
    Balicka N; Wegrzyn T; Czekanowska E
    Acta Microbiol Pol; 1977; 26(3):301-8. PubMed ID: 70976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thresholds of sensitivity in metal contact allergy. 2. The value of percutaneous absorption studies for selection of the most suitable vehicle.
    Wahlberg JE
    Berufsdermatosen; 1973 Aug; 21(4):151-8. PubMed ID: 4747064
    [No Abstract]   [Full Text] [Related]  

  • 39. Short-time effect of heavy metals upon microbial community activity.
    Wang F; Yao J; Si Y; Chen H; Russel M; Chen K; Qian Y; Zaray G; Bramanti E
    J Hazard Mater; 2010 Jan; 173(1-3):510-6. PubMed ID: 19748181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of introduced microorganisms on copper and cobalt mobility in soil].
    Nikovskaia GN; Ul'berg ZR; Koval' LA; Ostapenko AD
    Mikrobiol Z; 2001; 63(4):69-75. PubMed ID: 11692680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.