These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 26422925)

  • 1. THE WIDESPREAD OF Fe(III)-REDUCING BACTERIA IN NATURAL ECOSYSTEMS OF ECUADOR.
    Tashyrev OB; Govorukha VM
    Mikrobiol Z; 2015; 77(4):62-8. PubMed ID: 26422925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RESISTANCE OF MICROBIAL COMMUNITIES FROM ECUADOR ECOSYSTEMS TO REPRESENTATIVE TOXIC METALS - CrO4(2-), Co2+, Ni2+, Cu2+, Hg2+.
    Tashyrev OB; Prekrasna IeP; Tashyreva GO; Bielikova OIu
    Mikrobiol Z; 2015; 77(4):44-61. PubMed ID: 26422924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autecology of microorganisms of typical Ecuador biotopes.
    Tashyrev OB; Pidgorskyi VS; Toro MN; Gualoto M; Gladka GV; Tashyreva HO; Rokitko PV; Romanovskaya VA
    Mikrobiol Z; 2014; 76(6):2-10. PubMed ID: 25639037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. THE EFFECT OF P-NITROCHLOROBENZENE ON HOMEOSTASIS QUANTITATIVE PARAMETERS OF KARST CAVE CLAYS AND ECUADOR SOILS MICROBIAL COMMUNITIES.
    Tashyrev OB; Suslova OS; Rokitko PV
    Mikrobiol Z; 2015; 77(4):38-43. PubMed ID: 26422923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.
    Muehe EM; Adaktylou IJ; Obst M; Zeitvogel F; Behrens S; Planer-Friedrich B; Kraemer U; Kappler A
    Environ Sci Technol; 2013; 47(23):13430-9. PubMed ID: 24191747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic and molecular methods to evaluate the organoclay effects on a bacterial community.
    Abbate C; Ambrosoli R; Minati JL; Gennari M; Arena M
    Environ Pollut; 2013 Aug; 179():39-44. PubMed ID: 23644274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.
    Braunschweig J; Bosch J; Meckenstock RU
    N Biotechnol; 2013 Sep; 30(6):793-802. PubMed ID: 23557995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron and arsenic release from aquifer solids in response to biostimulation.
    McLean JE; Dupont RR; Sorensen DL
    J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of water saturation level on arsenic and metal mobility in the Fe-amended soil.
    Kumpiene J; Ragnvaldsson D; Lövgren L; Tesfalidet S; Gustavsson B; Lättström A; Leffler P; Maurice C
    Chemosphere; 2009 Jan; 74(2):206-15. PubMed ID: 18990425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of mine water.
    Klein R; Tischler JS; Mühling M; Schlömann M
    Adv Biochem Eng Biotechnol; 2014; 141():109-72. PubMed ID: 24357145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial toxicity of Cd and Hg in different soils related to total and water-soluble contents.
    Welp G; Brümmer GW
    Ecotoxicol Environ Saf; 1997 Dec; 38(3):200-4. PubMed ID: 9469869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The roles of natural organic matter in chemical and microbial reduction of ferric iron.
    Chen J; Gu B; Royer RA; Burgos WD
    Sci Total Environ; 2003 May; 307(1-3):167-78. PubMed ID: 12711432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of microbial diversity in soils is coincident with reductions in some specialized functions.
    Singh BK; Quince C; Macdonald CA; Khachane A; Thomas N; Al-Soud WA; Sørensen SJ; He Z; White D; Sinclair A; Crooks B; Zhou J; Campbell CD
    Environ Microbiol; 2014 Aug; 16(8):2408-20. PubMed ID: 24422656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial ecology. Out of thin air.
    Pala C
    Science; 2008 Jun; 320(5883):1582-3. PubMed ID: 18566261
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron(III) reduction.
    Yu HY; Wang YK; Chen PC; Li FB; Chen MJ; Hu M; Ouyang X
    J Environ Manage; 2014 Jan; 132():42-8. PubMed ID: 24286925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbially mediated abiotic transformation of the antimicrobial agent sulfamethoxazole under iron-reducing soil conditions.
    Mohatt JL; Hu L; Finneran KT; Strathmann TJ
    Environ Sci Technol; 2011 Jun; 45(11):4793-801. PubMed ID: 21542626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.
    Bae Y; Kim D; Cho HH; Singhal N; Park JW
    Water Res; 2012 Dec; 46(19):6391-8. PubMed ID: 23040563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction.
    Weber KA; Achenbach LA; Coates JD
    Nat Rev Microbiol; 2006 Oct; 4(10):752-64. PubMed ID: 16980937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.