BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26423033)

  • 21. A Comparison of Protein Stability in Prefillable Syringes Made of Glass and Plastic.
    Waxman L; Vilivalam VD
    PDA J Pharm Sci Technol; 2017; 71(6):462-477. PubMed ID: 28819049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High particle variability across siliconized and oil-free syringes and needles from the same lots.
    do Monte Agra LL; da Cruz NFS; Linkuviene V; Carpenter JF; Farah ME; Melo GB; Maia M
    Sci Rep; 2021 Feb; 11(1):4645. PubMed ID: 33633285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Impact of Syringe Age Prior to Filling on Migration of Subvisible Silicone-Oil Particles into Drug Product.
    Song J; Hu G; Hamzaoui H; Krishnamachari Y; Persak SC; Xi H; Su Y
    J Pharm Sci; 2022 Dec; 111(12):3191-3194. PubMed ID: 36404459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Protein Aggregates, Silicone Oil Droplets, and Protein-Silicone Interactions Using Imaging Flow Cytometry.
    Probst C
    J Pharm Sci; 2020 Jan; 109(1):364-374. PubMed ID: 31136765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of syringe material and silicone oil lubrication on the stability of pharmaceutical proteins.
    Krayukhina E; Tsumoto K; Uchiyama S; Fukui K
    J Pharm Sci; 2015 Feb; 104(2):527-35. PubMed ID: 25256796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cross-linked silicone coating: a novel prefilled syringe technology that reduces subvisible particles and maintains compatibility with biologics.
    Depaz RA; Chevolleau T; Jouffray S; Narwal R; Dimitrova MN
    J Pharm Sci; 2014 May; 103(5):1384-93. PubMed ID: 24643773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silicone oil induced aggregation of proteins.
    Jones LS; Kaufmann A; Middaugh CR
    J Pharm Sci; 2005 Apr; 94(4):918-27. PubMed ID: 15736189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The risks behind the widespread use of siliconized syringes in the healthcare practice.
    Melo GB; Shoenfeld Y; Rodrigues EB
    Int J Retina Vitreous; 2021 Oct; 7(1):66. PubMed ID: 34717776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Assessment of the Ability of Submicron- and Micron-Size Silicone Oil Droplets in Dropped Prefillable Syringes to Invoke Early- and Late-Stage Immune Responses.
    Krayukhina E; Yokoyama M; Hayashihara KK; Maruno T; Noda M; Watanabe H; Uchihashi T; Uchiyama S
    J Pharm Sci; 2019 Jul; 108(7):2278-2287. PubMed ID: 30790580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative assessment of silicone oil release with siliconized and silicone oil-free syringes by microflow imaging microscopy.
    Agra LLDM; Cruz NFSD; Linkuviene V; Carpenter JF; Farah ME; Melo GB; Maia M
    Arq Bras Oftalmol; 2022 Jul; ():. PubMed ID: 35857984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low molecular weight silicones particularly facilitate human serum albumin denaturation.
    Nayef LM; Khan MF; Brook MA
    Colloids Surf B Biointerfaces; 2015 Apr; 128():586-593. PubMed ID: 25800359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PARTICULATE MATTER FROM SYRINGES USED FOR INTRAVITREAL INJECTIONS.
    Dounce SM; Laskina O; Goldberg RA
    Retina; 2021 Apr; 41(4):827-833. PubMed ID: 32956210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Method to Determine Syringe Silicone Oil Layer Heterogeneity and Investigation of its Impact on Product Particle Counts.
    Cua M; Martin D; Meza P; Torraca G; Pearson T; Cao S; Yang C
    J Pharm Sci; 2020 Nov; 109(11):3292-3299. PubMed ID: 32679217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of Polymeric Syringes Used for Intravitreal Injection.
    Peláez SS; Mahler HC; Koulov A; Joerg S; Matter A; Vogt M; Chalus P; Zaeh M; Sediq AS; Jere D; Mathaes R
    J Pharm Sci; 2020 Sep; 109(9):2812-2818. PubMed ID: 32534032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Do not flick or drop off-label use plastic syringes in handling therapeutic proteins before administration.
    Kim NA; Kim DJ; Jeong SH
    Int J Pharm; 2020 Sep; 587():119704. PubMed ID: 32739384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sweeping of Adsorbed Therapeutic Protein on Prefillable Syringes Promotes Micron Aggregate Generation.
    Maruno T; Watanabe H; Yoneda S; Uchihashi T; Adachi S; Arai K; Sawaguchi T; Uchiyama S
    J Pharm Sci; 2018 Jun; 107(6):1521-1529. PubMed ID: 29421215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variables Impacting Silicone Oil Migration and Biologics in Prefilled Syringes.
    Gentile K; Huang C; Liu X; Whitty-Léveillé L; Hamzaoui H; Cristofolli E; Rayfield W; Afanador NL; Mittal S; Krishnamachari Y; Xi H; Zhao X
    J Pharm Sci; 2023 Aug; 112(8):2203-2211. PubMed ID: 37244516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Introducing the Alba
    Chillon A; Pace A; Zuccato D
    PDA J Pharm Sci Technol; 2018; 72(4):382-392. PubMed ID: 29853611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Product Handling Parameters on Particle Levels in a Commercial Factor VIII Product: Impacts and Mitigation.
    Ueda T; Nakamura K; Abe Y; Carpenter JF
    J Pharm Sci; 2019 Jan; 108(1):775-786. PubMed ID: 30196040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Colloidal Instability Fosters Agglomeration of Subvisible Particles Created by Rupture of Gels of a Monoclonal Antibody Formed at Silicone Oil-Water Interfaces.
    Mehta SB; Carpenter JF; Randolph TW
    J Pharm Sci; 2016 Aug; 105(8):2338-48. PubMed ID: 27422087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.