These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 26423221)
1. Computational identification of genetic subnetwork modules associated with maize defense response to Fusarium verticillioides. Kim M; Zhang H; Woloshuk C; Shim WB; Yoon BJ BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S12. PubMed ID: 26423221 [TBL] [Abstract][Full Text] [Related]
2. Computational Prediction of Pathogenic Network Modules in Fusarium verticillioides. Kim M; Zhang H; Woloshuk C; Shim WB; Yoon BJ IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):506-515. PubMed ID: 29610099 [TBL] [Abstract][Full Text] [Related]
3. Characterizing co-expression networks underpinning maize stalk rot virulence in Fusarium verticillioides through computational subnetwork module analyses. Kim MS; Zhang H; Yan H; Yoon BJ; Shim WB Sci Rep; 2018 May; 8(1):8310. PubMed ID: 29844502 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome analysis of maize pathogen Fusarium verticillioides revealed FvLcp1, a secreted protein with type-D fungal LysM and chitin-binding domains, that plays important roles in pathogenesis and mycotoxin production. Zhang H; Kim MS; Huang J; Yan H; Yang T; Song L; Yu W; Shim WB Microbiol Res; 2022 Dec; 265():127195. PubMed ID: 36126492 [TBL] [Abstract][Full Text] [Related]
5. Differential gene expression in kernels and silks of maize lines with contrasting levels of ear rot resistance after Fusarium verticillioides infection. Lanubile A; Pasini L; Marocco A J Plant Physiol; 2010 Nov; 167(16):1398-406. PubMed ID: 20650545 [TBL] [Abstract][Full Text] [Related]
6. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. Lanubile A; Ferrarini A; Maschietto V; Delledonne M; Marocco A; Bellin D BMC Genomics; 2014 Aug; 15(1):710. PubMed ID: 25155950 [TBL] [Abstract][Full Text] [Related]
7. MicroRNAs Are Involved in Maize Immunity Against Fusarium verticillioides Ear Rot. Zhou Z; Cao Y; Li T; Wang X; Chen J; He H; Yao W; Wu J; Zhang H Genomics Proteomics Bioinformatics; 2020 Jun; 18(3):241-255. PubMed ID: 32531477 [TBL] [Abstract][Full Text] [Related]
8. The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in maize. Christensen SA; Nemchenko A; Park YS; Borrego E; Huang PC; Schmelz EA; Kunze S; Feussner I; Yalpani N; Meeley R; Kolomiets MV Mol Plant Microbe Interact; 2014 Nov; 27(11):1263-76. PubMed ID: 25122482 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional changes in developing maize kernels in response to fumonisin-producing and nonproducing strains of Fusarium verticillioides. Lanubile A; Logrieco A; Battilani P; Proctor RH; Marocco A Plant Sci; 2013 Sep; 210():183-92. PubMed ID: 23849125 [TBL] [Abstract][Full Text] [Related]
10. The coiled-coil protein-binding motif in Fusarium verticillioides Fsr1 is essential for maize stalk rot virulence. Yamamura Y; Shim WB Microbiology (Reading); 2008 Jun; 154(Pt 6):1637-1645. PubMed ID: 18524918 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic Analysis of a Susceptible African Maize Line to Lambarey H; Moola N; Veenstra A; Murray S; Suhail Rafudeen M Plants (Basel); 2020 Aug; 9(9):. PubMed ID: 32872156 [TBL] [Abstract][Full Text] [Related]
12. Involvement of FvSet1 in Fumonisin B1 Biosynthesis, Vegetative Growth, Fungal Virulence, and Environmental Stress Responses in Fusarium verticillioides. Gu Q; Tahir HA; Zhang H; Huang H; Ji T; Sun X; Wu L; Wu H; Gao X Toxins (Basel); 2017 Jan; 9(2):. PubMed ID: 28125013 [No Abstract] [Full Text] [Related]
13. FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum. Shim WB; Sagaram US; Choi YE; So J; Wilkinson HH; Lee YW Mol Plant Microbe Interact; 2006 Jul; 19(7):725-33. PubMed ID: 16838785 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification of the maize 2OGD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearum. Ge C; Tang C; Zhu YX; Wang GF Gene; 2021 Jan; 764():145078. PubMed ID: 32858175 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290 [TBL] [Abstract][Full Text] [Related]
16. Loss of Lanubile A; Borrelli VMG; Soccio M; Giorni P; Stagnati L; Busconi M; Marocco A Genes (Basel); 2021 Feb; 12(3):. PubMed ID: 33668883 [No Abstract] [Full Text] [Related]
17. Characterization of Fusarium verticillioides strains isolated from maize in Italy: fumonisin production, pathogenicity and genetic variability. Covarelli L; Stifano S; Beccari G; Raggi L; Lattanzio VM; Albertini E Food Microbiol; 2012 Aug; 31(1):17-24. PubMed ID: 22475938 [TBL] [Abstract][Full Text] [Related]
18. Integrative transcriptome and proteome analysis reveals maize responses to Fusarium verticillioides infection inside the stalks. Zhang L; Hou M; Zhang X; Cao Y; Sun S; Zhu Z; Han S; Chen Y; Ku L; Duan C Mol Plant Pathol; 2023 Jul; 24(7):693-710. PubMed ID: 36938972 [TBL] [Abstract][Full Text] [Related]
19. A Genome Wide Association Study Reveals Markers and Genes Associated with Resistance to Stagnati L; Lanubile A; Samayoa LF; Bragalanti M; Giorni P; Busconi M; Holland JB; Marocco A G3 (Bethesda); 2019 Feb; 9(2):571-579. PubMed ID: 30567831 [No Abstract] [Full Text] [Related]
20. MicroRNAs involved in the trans-kingdom gene regulation in the interaction of maize kernels and Fusarium verticillioides. Qu Q; Liu N; Su Q; Liu X; Jia H; Liu Y; Sun M; Cao Z; Dong J Int J Biol Macromol; 2023 Jul; 242(Pt 4):125046. PubMed ID: 37245767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]