These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26423515)

  • 1. Efficient experimental design for uncertainty reduction in gene regulatory networks.
    Dehghannasiri R; Yoon BJ; Dougherty ER
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S2. PubMed ID: 26423515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental design framework for Markovian gene regulatory networks under stationary control policy.
    Dehghannasiri R; Shahrokh Esfahani M; Dougherty ER
    BMC Syst Biol; 2018 Dec; 12(Suppl 8):137. PubMed ID: 30577732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Experimental Design for Gene Regulatory Networks in the Presence of Uncertainty.
    Dehghannasiri R; Yoon BJ; Dougherty ER
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):938-50. PubMed ID: 26357334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential Experimental Design for Optimal Structural Intervention in Gene Regulatory Networks Based on the Mean Objective Cost of Uncertainty.
    Imani M; Dehghannasiri R; Braga-Neto UM; Dougherty ER
    Cancer Inform; 2018; 17():1176935118790247. PubMed ID: 30093796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph-Based Bayesian Optimization for Large-Scale Objective-Based Experimental Design.
    Imani M; Ghoreishi SF
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5913-5925. PubMed ID: 33877989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models.
    Steinke F; Seeger M; Tsuda K
    BMC Syst Biol; 2007 Nov; 1():51. PubMed ID: 18021391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal Objective-Based Experimental Design for Uncertain Dynamical Gene Networks with Experimental Error.
    Mohsenizadeh DN; Dehghannasiri R; Dougherty ER
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):218-230. PubMed ID: 27576263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intervention in gene regulatory networks with maximal phenotype alteration.
    Yousefi MR; Dougherty ER
    Bioinformatics; 2013 Jul; 29(14):1758-67. PubMed ID: 23630177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CoD-based reduction algorithm for designing stationary control policies on Boolean networks.
    Ghaffari N; Ivanov I; Qian X; Dougherty ER
    Bioinformatics; 2010 Jun; 26(12):1556-63. PubMed ID: 20421196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intervention in gene regulatory networks via a stationary mean-first-passage-time control policy.
    Vahedi G; Faryabi B; Chamberland JF; Datta A; Dougherty ER
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2319-31. PubMed ID: 18838357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model checking optimal finite-horizon control for probabilistic gene regulatory networks.
    Wei O; Guo Z; Niu Y; Liao W
    BMC Syst Biol; 2017 Dec; 11(Suppl 6):104. PubMed ID: 29297345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RESQUE: network reduction using semi-Markov random walk scores for efficient querying of biological networks.
    Sahraeian SM; Yoon BJ
    Bioinformatics; 2012 Aug; 28(16):2129-36. PubMed ID: 22730436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks.
    He J; Wang C; Qiu K; Zhong W
    BMC Syst Biol; 2014; 8 Suppl 3(Suppl 3):S6. PubMed ID: 25350277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classifier Design Given an Uncertainty Class of Feature Distributions via Regularized Maximum Likelihood and the Incorporation of Biological Pathway Knowledge in Steady-State Phenotype Classification.
    Esfahani MS; Knight J; Zollanvari A; Yoon BJ; Dougherty ER
    Pattern Recognit; 2013 Oct; 46(10):2783-2797. PubMed ID: 26279589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boolean regulatory network reconstruction using literature based knowledge with a genetic algorithm optimization method.
    Dorier J; Crespo I; Niknejad A; Liechti R; Ebeling M; Xenarios I
    BMC Bioinformatics; 2016 Oct; 17(1):410. PubMed ID: 27716031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A CoD-based stationary control policy for intervening in large gene regulatory networks.
    Ghaffari N; Ivanov I; Qian X; Dougherty ER
    BMC Bioinformatics; 2011 Oct; 12 Suppl 10(Suppl 10):S10. PubMed ID: 22165980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FunGeneNet: a web tool to estimate enrichment of functional interactions in experimental gene sets.
    Tiys ES; Ivanisenko TV; Demenkov PS; Ivanisenko VA
    BMC Genomics; 2018 Feb; 19(Suppl 3):76. PubMed ID: 29504895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning stochastic process-based models of dynamical systems from knowledge and data.
    Tanevski J; Todorovski L; Džeroski S
    BMC Syst Biol; 2016 Mar; 10():30. PubMed ID: 27005698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical modeling of uncertain interaction-based genomic networks.
    Mohsenizadeh DN; Hua J; Bittner M; Dougherty ER
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S3. PubMed ID: 26423606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.