BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26423609)

  • 41. Design, synthesis, and evaluation of phosphorescent Ir(III) complexes with anticancer activity.
    Liu Z; Li J; Ge X; Zhang S; Xu Z; Gao W
    J Inorg Biochem; 2019 Aug; 197():110703. PubMed ID: 31077890
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes.
    Huang H; Zhang P; Qiu K; Huang J; Chen Y; Ji L; Chao H
    Sci Rep; 2016 Feb; 6():20887. PubMed ID: 26864567
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of individual hypoxic cells in multicellular spheroids by flow cytometry using the 2-nitroimidazole, EF5, and monoclonal antibodies.
    Woods ML; Koch CJ; Lord EM
    Int J Radiat Oncol Biol Phys; 1996 Jan; 34(1):93-101. PubMed ID: 12118570
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel phosphorescent iridium(iii) complex bearing a donor-acceptor-type o-carboranylated ligand for endocellular hypoxia imaging.
    Li X; Yin Y; Gao P; Li W; Yan H; Lu C; Zhao Q
    Dalton Trans; 2017 Oct; 46(40):13802-13810. PubMed ID: 28960007
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rational design of an "OFF-ON" phosphorescent chemodosimeter based on an iridium(III) complex and its application for time-resolved luminescent detection and bioimaging of cysteine and homocysteine.
    Tang Y; Yang HR; Sun HB; Liu SJ; Wang JX; Zhao Q; Liu XM; Xu WJ; Li SB; Huang W
    Chemistry; 2013 Jan; 19(4):1311-9. PubMed ID: 23255155
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design strategy of optical probes for tumor hypoxia imaging.
    Xue F; Chen J; Chen H
    Sci China Life Sci; 2020 Dec; 63(12):1786-1797. PubMed ID: 32146696
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphorescent Zinc Probe for Reversible Turn-On Detection with Bathochromically Shifted Emission.
    Ryu SY; Huh M; You Y; Nam W
    Inorg Chem; 2015 Oct; 54(20):9704-14. PubMed ID: 26437173
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorescence monitoring of hypoxic microenvironment in solid-tumors to evaluate chemotherapeutic effects using the hypoxia-sensitive iridium (III) coordination compound.
    Zeng Y; Liu Y; Shang J; Ma J; Wang R; Deng L; Guo Y; Zhong F; Bai M; Zhang S; Wu D
    PLoS One; 2015; 10(3):e0121293. PubMed ID: 25786221
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct validation of aptamers as powerful tools to image solid tumor.
    Martínez O; Bellard E; Golzio M; Mechiche-Alami S; Rols MP; Teissié J; Ecochard V; Paquereau L
    Nucleic Acid Ther; 2014 Jun; 24(3):217-25. PubMed ID: 24490589
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitochondria-specific phosphorescent imaging and tracking in living cells with an AIPE-active iridium(III) complex.
    Chen Y; Qiao L; Yu B; Li G; Liu C; Ji L; Chao H
    Chem Commun (Camb); 2013 Dec; 49(94):11095-7. PubMed ID: 24141977
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CHEMORESISTANCE RELATED TO HYPOXIA ADAPTATION IN MESOTHELIOMA CELLS FROM TUMOR SPHEROIDS.
    Endoh D; Ishii K; Kohno K; Virgona N; Miyakoshi Y; Yano T; Ishida T
    Exp Oncol; 2022 Aug; 44(2):121-125. PubMed ID: 35964640
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphorescent ruthenium complexes with bromopyrene unit that enhance oxygen sensitivity.
    Kurihara R; Ikegami R; Asahi W; Tanabe K
    Bioorg Med Chem; 2018 Sep; 26(16):4595-4601. PubMed ID: 30131291
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cyclometalated iridium(III) bipyridyl-phenylenediamine complexes with multicolor phosphorescence: synthesis, electrochemistry, photophysics, and intracellular nitric oxide sensing.
    Law WH; Leung KK; Lee LC; Poon CS; Liu HW; Lo KK
    ChemMedChem; 2014 Jun; 9(6):1316-29. PubMed ID: 24643988
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids.
    Riffle S; Hegde RS
    J Exp Clin Cancer Res; 2017 Aug; 36(1):102. PubMed ID: 28774341
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Cyclodextrin-Hosted Ir(III) Complex for Ratiometric Mapping of Tumor Hypoxia In Vivo.
    Xiao P; Liu C; Ma T; Lu X; Jing L; Hou Y; Zhang P; Huang G; Gao M
    Adv Sci (Weinh); 2021 Apr; 8(8):2004044. PubMed ID: 33898188
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies.
    Kingsley DM; Roberge CL; Rudkouskaya A; Faulkner DE; Barroso M; Intes X; Corr DT
    Acta Biomater; 2019 Sep; 95():357-370. PubMed ID: 30776506
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The novel fluorinated 2-nitroimidazole hypoxia probe SR-4554: reductive metabolism and semiquantitative localisation in human ovarian cancer multicellular spheroids as measured by electron energy loss spectroscopic analysis.
    Aboagye EO; Lewis AD; Johnson A; Workman P; Tracy M; Huxham IM
    Br J Cancer; 1995 Aug; 72(2):312-8. PubMed ID: 7640211
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Live Microscopy of Multicellular Spheroids with the Multimodal Near-Infrared Nanoparticles Reveals Differences in Oxygenation Gradients.
    Debruyne AC; Okkelman IA; Heymans N; Pinheiro C; Hendrix A; Nobis M; Borisov SM; Dmitriev RI
    ACS Nano; 2024 May; 18(19):12168-12186. PubMed ID: 38687976
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A method for estimating the oxygen consumption rate in multicellular tumour spheroids.
    Grimes DR; Kelly C; Bloch K; Partridge M
    J R Soc Interface; 2014 Mar; 11(92):20131124. PubMed ID: 24430128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A time-resolved near-infrared phosphorescent iridium(iii) complex for fast and highly specific peroxynitrite detection and bioimaging applications.
    Li Y; Wu Y; Chen L; Zeng H; Chen X; Lun W; Fan X; Wong WY
    J Mater Chem B; 2019 Dec; 7(47):7612-7618. PubMed ID: 31746928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.