These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26423704)

  • 21. Combinatorial discovery of oxidative dehydrogenation catalysts within the Mo-V-Nb-O system.
    Cong P; Dehestani A; Doolen R; Giaquinta DM; Guan S; Markov V; Poojary D; Self K; Turner H; Weinberg WH
    Proc Natl Acad Sci U S A; 1999 Sep; 96(20):11077-80. PubMed ID: 10500131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A series of new phases in the alkali metal-Nb(V)/Ta(V)-Se(IV)/Te(IV)-O systems.
    Gu QH; Hu CL; Zhang JH; Mao JG
    Dalton Trans; 2011 Mar; 40(11):2562-9. PubMed ID: 21293821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane.
    Zhu H; Rosenfeld DC; Anjum DH; Caps V; Basset JM
    ChemSusChem; 2015 Apr; 8(7):1254-63. PubMed ID: 25755222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective catalytic oxidation of ethanol to acetic acid on dispersed Mo-V-Nb mixed oxides.
    Li X; Iglesia E
    Chemistry; 2007; 13(33):9324-30. PubMed ID: 17912732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A study by electrical conductivity measurements of the semiconductive and redox properties of Nb-doped NiO catalysts in correlation with the oxidative dehydrogenation of ethane.
    Popescu I; Skoufa Z; Heracleous E; Lemonidou A; Marcu IC
    Phys Chem Chem Phys; 2015 Mar; 17(12):8138-47. PubMed ID: 25728825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and synthesis of highly active MoVTeNb-oxides for ethane oxidative dehydrogenation.
    Melzer D; Mestl G; Wanninger K; Zhu Y; Browning ND; Sanchez-Sanchez M; Lercher JA
    Nat Commun; 2019 Sep; 10(1):4012. PubMed ID: 31488821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ Raman studies during sulfidation, and operando Raman-GC during ammoxidation reaction using nickel-containing catalysts: a valuable tool to identify the transformations of catalytic species.
    Guerrero-Pérez MO; Rojas E; Gutiérrez-Alejandre A; Ramírez J; Sánchez-Minero F; Fernández-Vargas C; Bañares MA
    Phys Chem Chem Phys; 2011 May; 13(20):9260-7. PubMed ID: 21472171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates.
    Ansari A; Kaushik A; Rajaraman G
    J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Propane oxidative dehydrogenation over highly selective hexagonal boron nitride catalysts: The role of oxidative coupling of methyl.
    Tian J; Tan J; Xu M; Zhang Z; Wan S; Wang S; Lin J; Wang Y
    Sci Adv; 2019 Mar; 5(3):eaav8063. PubMed ID: 30899785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor.
    Carrero CA; Keturakis CJ; Orrego A; Schomäcker R; Wachs IE
    Dalton Trans; 2013 Sep; 42(35):12644-53. PubMed ID: 23652298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facilitating the reduction of V-O bonds on VO
    Xie Y; Luo R; Sun G; Chen S; Zhao ZJ; Mu R; Gong J
    Chem Sci; 2020 Mar; 11(15):3845-3851. PubMed ID: 34122852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the oxidative relationships of the metal oxo, hydroxo, and hydroperoxide intermediates with manganese(IV) complexes having bridged cyclams: correlation of the physicochemical properties with reactivity.
    Yin G
    Acc Chem Res; 2013 Feb; 46(2):483-92. PubMed ID: 23194251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fine-Tuning the Activity of Metal-Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane.
    Li Z; Peters AW; Platero-Prats AE; Liu J; Kung CW; Noh H; DeStefano MR; Schweitzer NM; Chapman KW; Hupp JT; Farha OK
    J Am Chem Soc; 2017 Oct; 139(42):15251-15258. PubMed ID: 28976757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox kinetics of ceria-based mixed oxides in selective hydrogen combustion.
    Blank JH; Beckers J; Collignon PF; Rothenberg G
    Chemphyschem; 2007 Dec; 8(17):2490-7. PubMed ID: 18022996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Size-dependent catalytic activity of supported vanadium oxide species: oxidative dehydrogenation of propane.
    Rozanska X; Fortrie R; Sauer J
    J Am Chem Soc; 2014 May; 136(21):7751-61. PubMed ID: 24828405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of perferryl-oxo oxidant in alkane hydroxylation catalyzed by cytochrome P450: a hybrid density functional study.
    Isobe H; Yamaguchi K; Okumura M; Shimada J
    J Phys Chem B; 2012 Apr; 116(16):4713-30. PubMed ID: 22510212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative dehydrogenation of hydrocarbons by V3O7(+) compared to other vanadium oxide species.
    Rozanska X; Sauer J
    J Phys Chem A; 2009 Oct; 113(43):11586-94. PubMed ID: 19438201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum chemical study of mechanisms for oxidative dehydrogenation of propane on vanadium oxide.
    Redfern PC; Zapol P; Sternberg M; Adiga SP; Zygmunt SA; Curtiss LA
    J Phys Chem B; 2006 Apr; 110(16):8363-71. PubMed ID: 16623521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane.
    Dai Y; Gao X; Wang Q; Wan X; Zhou C; Yang Y
    Chem Soc Rev; 2021 May; 50(9):5590-5630. PubMed ID: 33690780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.