These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 26423958)

  • 21. Overexpression of an evolutionarily conserved drought-responsive sugarcane gene enhances salinity and drought resilience.
    Begcy K; Mariano ED; Lembke CG; Zingaretti SM; Souza GM; Araújo P; Menossi M
    Ann Bot; 2019 Oct; 124(4):691-700. PubMed ID: 31125059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The SoNAP gene from sugarcane (Saccharum officinarum) encodes a senescence-associated NAC transcription factor involved in response to osmotic and salt stress.
    Carrillo-Bermejo EA; Gamboa-Tuz SD; Pereira-Santana A; Keb-Llanes MA; Castaño E; Figueroa-Yañez LJ; Rodriguez-Zapata LC
    J Plant Res; 2020 Nov; 133(6):897-909. PubMed ID: 33094397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genotype-dependent regulation of drought-responsive genes in tolerant and sensitive sugarcane cultivars.
    da Silva MD; de Oliveira Silva RL; Ferreira Neto JRC; Benko-Iseppon AM; Kido EA
    Gene; 2017 Oct; 633():17-27. PubMed ID: 28855118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous expression of regulatory genes associated with specific drought-adaptive traits improves drought adaptation in peanut.
    Ramu VS; Swetha TN; Sheela SH; Babitha CK; Rohini S; Reddy MK; Tuteja N; Reddy CP; Prasad TG; Udayakumar M
    Plant Biotechnol J; 2016 Mar; 14(3):1008-20. PubMed ID: 26383697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses.
    Jin-Long G; Li-Ping X; Jing-Ping F; Ya-Chun S; Hua-Ying F; You-Xiong Q; Jing-Sheng X
    Plant Cell Rep; 2012 Oct; 31(10):1801-12. PubMed ID: 22696141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene Co-Expression Analysis Reveals Transcriptome Divergence between Wild and Cultivated Sugarcane under Drought Stress.
    Li P; Lin P; Zhao Z; Li Z; Liu Y; Huang C; Huang G; Xu L; Deng Z; Zhang Y; Zhao X
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential gene expression in drought-tolerant sugarcane roots.
    Vantini JS; Dedemo GC; Jovino Gimenez DF; Fonseca LF; Tezza RI; Mutton MA; Ferro JA; Ferro MI
    Genet Mol Res; 2015 Jun; 14(2):7196-207. PubMed ID: 26125930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De novo transcriptome assembly of sugarcane leaves submitted to prolonged water-deficit stress.
    Belesini AA; Carvalho FMS; Telles BR; de Castro GM; Giachetto PF; Vantini JS; Carlin SD; Cazetta JO; Pinheiro DG; Ferro MIT
    Genet Mol Res; 2017 May; 16(2):. PubMed ID: 28549198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress.
    Mohammadi PP; Moieni A; Komatsu S
    Amino Acids; 2012 Nov; 43(5):2137-52. PubMed ID: 22543724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane.
    Reis RR; da Cunha BA; Martins PK; Martins MT; Alekcevetch JC; Chalfun A; Andrade AC; Ribeiro AP; Qin F; Mizoi J; Yamaguchi-Shinozaki K; Nakashima K; Carvalho Jde F; de Sousa CA; Nepomuceno AL; Kobayashi AK; Molinari HB
    Plant Sci; 2014 May; 221-222():59-68. PubMed ID: 24656336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unexpected inheritance pattern of Erianthus arundinaceus chromosomes in the intergeneric progeny between Saccharum spp. and Erianthus arundinaceus.
    Wu J; Huang Y; Lin Y; Fu C; Liu S; Deng Z; Li Q; Huang Z; Chen R; Zhang M
    PLoS One; 2014; 9(10):e110390. PubMed ID: 25310831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation, characterization and expression analysis of stress responsive plant nuclear transcriptional factor subunit (
    Peter SC; Murugan N; Mohanan MV; Sasikumar SPT; Selvarajan D; Jayanarayanan AN; Shivalingamurthy SG; Chennappa M; Ramanathan V; Govindakurup H; Ram B; Chinnaswamy A
    3 Biotech; 2020 Jul; 10(7):304. PubMed ID: 32566442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative de novo transcriptome analysis identifies salinity stress responsive genes and metabolic pathways in sugarcane and its wild relative Erianthus arundinaceus [Retzius] Jeswiet.
    Vignesh P; Mahadevaiah C; Parimalan R; Valarmathi R; Dharshini S; Nisha S; Suresha GS; Swathi S; Mahadeva Swamy HK; Sreenivasa V; Mohanraj K; Hemaprabha G; Bakshi R; Appunu C
    Sci Rep; 2021 Dec; 11(1):24514. PubMed ID: 34972826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress.
    Li C; Nong Q; Solanki MK; Liang Q; Xie J; Liu X; Li Y; Wang W; Yang L; Li Y
    Sci Rep; 2016 May; 6():25698. PubMed ID: 27170459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Label-Free Quantitative Proteomics of Enriched Nuclei from Sugarcane (Saccharum ssp) Stems in Response to Drought Stress.
    Salvato F; Loziuk P; Kiyota E; Daneluzzi GS; Araújo P; Muddiman DC; Mazzafera P
    Proteomics; 2019 Jul; 19(14):e1900004. PubMed ID: 31172662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proposal of an index of stability for evaluating plant drought memory: A case study in sugarcane.
    Ribeiro RV; Vitti KA; Marcos FCC; Souza GM; Pissolato MD; Almeida LFR; Machado EC
    J Plant Physiol; 2021 May; 260():153397. PubMed ID: 33721569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative transcriptome profiling to unravel the key molecular signalling pathways and drought adaptive plasticity in shoot borne root system of sugarcane.
    Valarmathi R; Mahadeva Swamy HK; Appunu C; Suresha GS; Mohanraj K; Hemaprabha G; Mahadevaiah C; Ulaganathan V
    Sci Rep; 2023 Aug; 13(1):12853. PubMed ID: 37553413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing drought tolerance in C(4) crops.
    Lopes MS; Araus JL; van Heerden PD; Foyer CH
    J Exp Bot; 2011 May; 62(9):3135-53. PubMed ID: 21511912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel PR10 promoter from Erianthus arundinaceus directs high constitutive transgene expression and is enhanced upon wounding in heterologous plant systems.
    Chakravarthi M; Syamaladevi DP; Harunipriya P; Augustine SM; Subramonian N
    Mol Biol Rep; 2016 Jan; 43(1):17-30. PubMed ID: 26671655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpression of the phosphatidylinositol synthase gene (ZmPIS) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize.
    Liu X; Zhai S; Zhao Y; Sun B; Liu C; Yang A; Zhang J
    Plant Cell Environ; 2013 May; 36(5):1037-55. PubMed ID: 23152961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.