BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1606 related articles for article (PubMed ID: 26423970)

  • 1. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Bergs A; Henss T; Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2022; 2468():89-115. PubMed ID: 35320562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoactivated Adenylyl Cyclases as Optogenetic Modulators of Neuronal Activity.
    Henss T; Schneider M; Vettkötter D; Costa WS; Liewald JF; Gottschalk A
    Methods Mol Biol; 2022; 2483():61-76. PubMed ID: 35286669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoactivated adenylyl cyclases as optogenetic modulators of neuronal activity.
    Costa WS; Liewald J; Gottschalk A
    Methods Mol Biol; 2014; 1148():161-75. PubMed ID: 24718801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour.
    Husson SJ; Gottschalk A; Leifer AM
    Biol Cell; 2013 Jun; 105(6):235-50. PubMed ID: 23458457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic Modulation of Ion Channels by Photoreceptive Proteins.
    Tsukamoto H; Furutani Y
    Adv Exp Med Biol; 2021; 1293():73-88. PubMed ID: 33398808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual Color Neural Activation and Behavior Control with Chrimson and CoChR in Caenorhabditis elegans.
    Schild LC; Glauser DA
    Genetics; 2015 Aug; 200(4):1029-34. PubMed ID: 26022242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools.
    AzimiHashemi N; Erbguth K; Vogt A; Riemensperger T; Rauch E; Woodmansee D; Nagpal J; Brauner M; Sheves M; Fiala A; Kattner L; Trauner D; Hegemann P; Gottschalk A; Liewald JF
    Nat Commun; 2014 Dec; 5():5810. PubMed ID: 25503804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodopsin-based voltage imaging tools for use in muscles and neurons of
    Azimi Hashemi N; Bergs ACF; Schüler C; Scheiwe AR; Steuer Costa W; Bach M; Liewald JF; Gottschalk A
    Proc Natl Acad Sci U S A; 2019 Aug; 116(34):17051-17060. PubMed ID: 31371514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise optical control of gene expression in
    Davis L; Radman I; Goutou A; Tynan A; Baxter K; Xi Z; O'Shea JM; Chin JW; Greiss S
    Elife; 2021 Aug; 10():. PubMed ID: 34350826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodopsin optogenetic toolbox v2.0 for light-sensitive excitation and inhibition in Caenorhabditis elegans.
    Bergs A; Schultheis C; Fischer E; Tsunoda SP; Erbguth K; Husson SJ; Govorunova E; Spudich JL; Nagel G; Gottschalk A; Liewald JF
    PLoS One; 2018; 13(2):e0191802. PubMed ID: 29389997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic manipulation of neural and non-neural functions.
    Yawo H; Asano T; Sakai S; Ishizuka T
    Dev Growth Differ; 2013 May; 55(4):474-90. PubMed ID: 23550617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics.
    Govorunova EG; Sineshchekov OA; Janz R; Liu X; Spudich JL
    Science; 2015 Aug; 349(6248):647-50. PubMed ID: 26113638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple optogenetic system for behavioral analysis of freely moving small animals.
    Kawazoe Y; Yawo H; Kimura KD
    Neurosci Res; 2013 Jan; 75(1):65-8. PubMed ID: 22613841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Synaptic Signaling with Optogenetic Stimulation and Genetically Encoded Calcium Reporters.
    Borja GB; Shroff H; Upadhyay H; Liu PW; Baru V; Cheng YC; McManus OB; Williams LA; Dempsey GT; Werley CA
    Methods Mol Biol; 2021; 2191():109-134. PubMed ID: 32865742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium channel-based optogenetic silencing.
    Bernal Sierra YA; Rost BR; Pofahl M; Fernandes AM; Kopton RA; Moser S; Holtkamp D; Masala N; Beed P; Tukker JJ; Oldani S; Bönigk W; Kohl P; Baier H; Schneider-Warme F; Hegemann P; Beck H; Seifert R; Schmitz D
    Nat Commun; 2018 Nov; 9(1):4611. PubMed ID: 30397200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Painting with Rainbows: Patterning Light in Space, Time, and Wavelength for Multiphoton Optogenetic Sensing and Control.
    Brinks D; Adam Y; Kheifets S; Cohen AE
    Acc Chem Res; 2016 Nov; 49(11):2518-2526. PubMed ID: 27786461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical silencing of C. elegans cells with light-driven proton pumps.
    Okazaki A; Takahashi M; Toyoda N; Takagi S
    Methods; 2014 Aug; 68(3):425-30. PubMed ID: 24593985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances and prospects of rhodopsin-based optogenetics in plant research.
    Zhou Y; Ding M; Nagel G; Konrad KR; Gao S
    Plant Physiol; 2021 Oct; 187(2):572-589. PubMed ID: 35237820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 81.