These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 26423974)
21. Detecting and Trapping of a Single C. elegans Worm in a Microfluidic Chip for Automated Microplate Dispensing. Desta IT; Al-Sharif A; AlGharibeh N; Mustafa N; Orozaliev A; Giakoumidis N; Gunsalus KC; Song YA SLAS Technol; 2017 Aug; 22(4):431-436. PubMed ID: 27630097 [TBL] [Abstract][Full Text] [Related]
22. Quantitative analysis of Caenorhabditis elegans chemotaxis using a microfluidic device. Hu L; Ye J; Tan H; Ge A; Tang L; Feng X; Du W; Liu BF Anal Chim Acta; 2015 Aug; 887():155-162. PubMed ID: 26320797 [TBL] [Abstract][Full Text] [Related]
23. Microfluidics as a tool for C. elegans research. San-Miguel A; Lu H WormBook; 2013 Sep; ():1-19. PubMed ID: 24065448 [TBL] [Abstract][Full Text] [Related]
24. Microfluidic-based electrotaxis for on-demand quantitative analysis of Caenorhabditis elegans' locomotion. Tong J; Rezai P; Salam S; Selvaganapathy PR; Gupta BP J Vis Exp; 2013 May; (75):e50226. PubMed ID: 23665669 [TBL] [Abstract][Full Text] [Related]
25. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Rohde CB; Zeng F; Gonzalez-Rubio R; Angel M; Yanik MF Proc Natl Acad Sci U S A; 2007 Aug; 104(35):13891-5. PubMed ID: 17715055 [TBL] [Abstract][Full Text] [Related]
26. A multi-trap microfluidic chip enabling longitudinal studies of nerve regeneration in Caenorhabditis elegans. Gokce SK; Hegarty EM; Mondal S; Zhao P; Ghorashian N; Hilliard MA; Ben-Yakar A Sci Rep; 2017 Aug; 7(1):9837. PubMed ID: 28852096 [TBL] [Abstract][Full Text] [Related]
27. Maze exploration and learning in C. elegans. Qin J; Wheeler AR Lab Chip; 2007 Feb; 7(2):186-92. PubMed ID: 17268620 [TBL] [Abstract][Full Text] [Related]
28. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Chung K; Crane MM; Lu H Nat Methods; 2008 Jul; 5(7):637-43. PubMed ID: 18568029 [TBL] [Abstract][Full Text] [Related]
29. Multi-well imaging of development and behavior in Caenorhabditis elegans. Yu CC; Raizen DM; Fang-Yen C J Neurosci Methods; 2014 Feb; 223():35-9. PubMed ID: 24321627 [TBL] [Abstract][Full Text] [Related]
34. Multiparameter evaluation of the longevity in C. elegans under stress using an integrated microfluidic device. Wen H; Shi W; Qin J Biomed Microdevices; 2012 Aug; 14(4):721-8. PubMed ID: 22526681 [TBL] [Abstract][Full Text] [Related]
35. Electrotaxis of Caenorhabditis elegans in a microfluidic environment. Rezai P; Siddiqui A; Selvaganapathy PR; Gupta BP Lab Chip; 2010 Jan; 10(2):220-6. PubMed ID: 20066250 [TBL] [Abstract][Full Text] [Related]
36. Microfluidic in vivo screen identifies compounds enhancing neuronal regeneration. Rohde CB; Gilleland C; Samara C; Norton S; Haggarty S; Yanik MF Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5950-2. PubMed ID: 19965065 [TBL] [Abstract][Full Text] [Related]
37. C.L.I.P.--continuous live imaging platform for direct observation of C. elegans physiological processes. Krajniak J; Hao Y; Mak HY; Lu H Lab Chip; 2013 Aug; 13(15):2963-71. PubMed ID: 23708469 [TBL] [Abstract][Full Text] [Related]
38. Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate. Pang S; Cui X; DeModena J; Wang YM; Sternberg P; Yang C Lab Chip; 2010 Feb; 10(4):411-4. PubMed ID: 20126679 [TBL] [Abstract][Full Text] [Related]
39. Droplet array for screening acute behaviour response to chemicals in Caenorhabditis elegans. Aubry G; Lu H Lab Chip; 2017 Dec; 17(24):4303-4311. PubMed ID: 29120477 [TBL] [Abstract][Full Text] [Related]
40. Off-response in ASH neurons evoked by CuSO4 requires the TRP channel OSM-9 in Caenorhabditis elegans. Wang W; Xu ZJ; Wu YQ; Qin LW; Li ZY; Wu ZX Biochem Biophys Res Commun; 2015 Jun; 461(3):463-8. PubMed ID: 25871795 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]