BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 26424109)

  • 1. NADPH oxidases-do they play a role in TRPC regulation under hypoxia?
    Malczyk M; Veith C; Schermuly RT; Gudermann T; Dietrich A; Sommer N; Weissmann N; Pak O
    Pflugers Arch; 2016 Jan; 468(1):23-41. PubMed ID: 26424109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.
    Sommer N; Strielkov I; Pak O; Weissmann N
    Eur Respir J; 2016 Jan; 47(1):288-303. PubMed ID: 26493804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of ROS signaling in differential hypoxic Ca2+ and contractile responses in pulmonary and systemic vascular smooth muscle cells.
    Wang YX; Zheng YM
    Respir Physiol Neurobiol; 2010 Dec; 174(3):192-200. PubMed ID: 20713188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels.
    Veit F; Pak O; Brandes RP; Weissmann N
    Antioxid Redox Signal; 2015 Feb; 22(6):537-52. PubMed ID: 25545236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange.
    Weissmann N; Dietrich A; Fuchs B; Kalwa H; Ay M; Dumitrascu R; Olschewski A; Storch U; Mederos y Schnitzler M; Ghofrani HA; Schermuly RT; Pinkenburg O; Seeger W; Grimminger F; Gudermann T
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):19093-8. PubMed ID: 17142322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of classical transient receptor potential channels in the regulation of hypoxic pulmonary vasoconstriction.
    Fuchs B; Dietrich A; Gudermann T; Kalwa H; Grimminger F; Weissmann N
    Adv Exp Med Biol; 2010; 661():187-200. PubMed ID: 20204731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension.
    Li Q; Mao M; Qiu Y; Liu G; Sheng T; Yu X; Wang S; Zhu D
    PLoS One; 2016; 11(2):e0149164. PubMed ID: 26871724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms.
    Sommer N; Dietrich A; Schermuly RT; Ghofrani HA; Gudermann T; Schulz R; Seeger W; Grimminger F; Weissmann N
    Eur Respir J; 2008 Dec; 32(6):1639-51. PubMed ID: 19043010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ROS-dependent signaling mechanisms for hypoxic Ca(2+) responses in pulmonary artery myocytes.
    Wang YX; Zheng YM
    Antioxid Redox Signal; 2010 Mar; 12(5):611-23. PubMed ID: 19764882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxic pulmonary vasoconstriction--triggered by an increase in reactive oxygen species?
    Weissmann N; Schermuly RT; Ghofrani HA; Hänze J; Goyal P; Grimminger F; Seeger W
    Novartis Found Symp; 2006; 272():196-208; discussion 208-17. PubMed ID: 16686437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species as therapeutic targets in pulmonary hypertension.
    Freund-Michel V; Guibert C; Dubois M; Courtois A; Marthan R; Savineau JP; Muller B
    Ther Adv Respir Dis; 2013 Jun; 7(3):175-200. PubMed ID: 23328248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulmonary Hypertension Induces Serotonin Hyperreactivity and Metabolic Reprogramming in Coronary Arteries via NOX1/4-TRPM2 Signaling Pathway.
    Huang YZ; Wu JC; Lu GF; Li HB; Lai SM; Lin YC; Gui LX; Sham JSK; Lin MJ; Lin DC
    Hypertension; 2024 Mar; 81(3):582-594. PubMed ID: 38174565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological redox signalling and regulation of ion channels: implications for pulmonary hypertension.
    Ward JPT
    Exp Physiol; 2017 Sep; 102(9):1078-1082. PubMed ID: 28004868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutral sphingomyelinase, NADPH oxidase and reactive oxygen species. Role in acute hypoxic pulmonary vasoconstriction.
    Frazziano G; Moreno L; Moral-Sanz J; Menendez C; Escolano L; Gonzalez C; Villamor E; Alvarez-Sala JL; Cogolludo AL; Perez-Vizcaino F
    J Cell Physiol; 2011 Oct; 226(10):2633-40. PubMed ID: 21792922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disrupting the vicious cycle created by NOX activation in sickle erythrocytes exposed to hypoxia/reoxygenation prevents adhesion and vasoocclusion.
    MacKinney A; Woska E; Spasojevic I; Batinic-Haberle I; Zennadi R
    Redox Biol; 2019 Jul; 25():101097. PubMed ID: 30661992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox signaling and reactive oxygen species in hypoxic pulmonary vasoconstriction.
    Fuchs B; Sommer N; Dietrich A; Schermuly RT; Ghofrani HA; Grimminger F; Seeger W; Gudermann T; Weissmann N
    Respir Physiol Neurobiol; 2010 Dec; 174(3):282-91. PubMed ID: 20801235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets.
    Dennis KE; Aschner JL; Milatovic D; Schmidt JW; Aschner M; Kaplowitz MR; Zhang Y; Fike CD
    Am J Physiol Lung Cell Mol Physiol; 2009 Oct; 297(4):L596-607. PubMed ID: 19592458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of NADPH oxidase attenuates hypoxia-induced dysfunctions of endothelial progenitor cells.
    Liu B; Ren KD; Peng JJ; Li T; Luo XJ; Fan C; Yang JF; Peng J
    Biochem Biophys Res Commun; 2017 Jan; 482(4):1080-1087. PubMed ID: 27913300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxic vascular response and ventilation/perfusion matching in end-stage COPD may depend on p22phox.
    Nagaraj C; Tabeling C; Nagy BM; Jain PP; Marsh LM; Papp R; Pienn M; Witzenrath M; Ghanim B; Klepetko W; Weir EK; Heschl S; Kwapiszewska G; Olschewski A; Olschewski H
    Eur Respir J; 2017 Jul; 50(1):. PubMed ID: 28729471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular insights of NADPH oxidases and its pathological consequences.
    Waghela BN; Vaidya FU; Agrawal Y; Santra MK; Mishra V; Pathak C
    Cell Biochem Funct; 2021 Mar; 39(2):218-234. PubMed ID: 32975319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.