These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
714 related articles for article (PubMed ID: 26424535)
1. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies. Brouwer M; Zhou H; Nadif Kasri N Stem Cell Rev Rep; 2016 Feb; 12(1):54-72. PubMed ID: 26424535 [TBL] [Abstract][Full Text] [Related]
2. An Overview of Direct Somatic Reprogramming: The Ins and Outs of iPSCs. Menon S; Shailendra S; Renda A; Longaker M; Quarto N Int J Mol Sci; 2016 Jan; 17(1):. PubMed ID: 26805822 [TBL] [Abstract][Full Text] [Related]
4. High-efficiency generation of induced pluripotent mesenchymal stem cells from human dermal fibroblasts using recombinant proteins. Chen F; Zhang G; Yu L; Feng Y; Li X; Zhang Z; Wang Y; Sun D; Pradhan S Stem Cell Res Ther; 2016 Jul; 7(1):99. PubMed ID: 27473118 [TBL] [Abstract][Full Text] [Related]
5. MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Hu S; Wilson KD; Ghosh Z; Han L; Wang Y; Lan F; Ransohoff KJ; Burridge P; Wu JC Stem Cells; 2013 Feb; 31(2):259-68. PubMed ID: 23136034 [TBL] [Abstract][Full Text] [Related]
6. A novel model of urinary tract differentiation, tissue regeneration, and disease: reprogramming human prostate and bladder cells into induced pluripotent stem cells. Moad M; Pal D; Hepburn AC; Williamson SC; Wilson L; Lako M; Armstrong L; Hayward SW; Franco OE; Cates JM; Fordham SE; Przyborski S; Carr-Wilkinson J; Robson CN; Heer R Eur Urol; 2013 Nov; 64(5):753-61. PubMed ID: 23582880 [TBL] [Abstract][Full Text] [Related]
7. iPSCs-based generation of vascular cells: reprogramming approaches and applications. Klein D Cell Mol Life Sci; 2018 Apr; 75(8):1411-1433. PubMed ID: 29243171 [TBL] [Abstract][Full Text] [Related]
8. Screening of Human cDNA Library Reveals Two differentiation-Related Genes, HHEX and HLX, as Promoters of Early Phase Reprogramming toward Pluripotency. Yamakawa T; Sato Y; Matsumura Y; Kobayashi Y; Kawamura Y; Goshima N; Yamanaka S; Okita K Stem Cells; 2016 Nov; 34(11):2661-2669. PubMed ID: 27335261 [TBL] [Abstract][Full Text] [Related]
9. Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells. Bazley FA; Liu CF; Yuan X; Hao H; All AH; De Los Angeles A; Zambidis ET; Gearhart JD; Kerr CL Stem Cells Dev; 2015 Nov; 24(22):2634-48. PubMed ID: 26154167 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Generation of Integration-free iPSCs from Human Adult Peripheral Blood Mononuclear Cells with an Optimal Combination of Episomal Vectors. Wen W; Zhang JP; Xu J; Su RJ; Neises A; Ji GZ; Yuan W; Cheng T; Zhang XB Stem Cell Reports; 2016 Jun; 6(6):873-884. PubMed ID: 27161365 [TBL] [Abstract][Full Text] [Related]
11. Zinc finger nuclease-expressing baculoviral vectors mediate targeted genome integration of reprogramming factor genes to facilitate the generation of human induced pluripotent stem cells. Phang RZ; Tay FC; Goh SL; Lau CH; Zhu H; Tan WK; Liang Q; Chen C; Du S; Li Z; Tay JC; Wu C; Zeng J; Fan W; Toh HC; Wang S Stem Cells Transl Med; 2013 Dec; 2(12):935-45. PubMed ID: 24167318 [TBL] [Abstract][Full Text] [Related]
12. Directed Myogenic Differentiation of Human Induced Pluripotent Stem Cells. Shoji E; Woltjen K; Sakurai H Methods Mol Biol; 2016; 1353():89-99. PubMed ID: 25971915 [TBL] [Abstract][Full Text] [Related]
13. Using low-risk factors to generate non-integrated human induced pluripotent stem cells from urine-derived cells. Wang L; Chen Y; Guan C; Zhao Z; Li Q; Yang J; Mo J; Wang B; Wu W; Yang X; Song L; Li J Stem Cell Res Ther; 2017 Nov; 8(1):245. PubMed ID: 29096702 [TBL] [Abstract][Full Text] [Related]
15. Inducing Pluripotency in the Domestic Cat ( Dutton LC; Dudhia J; Guest DJ; Connolly DJ Stem Cells Dev; 2019 Oct; 28(19):1299-1309. PubMed ID: 31389301 [TBL] [Abstract][Full Text] [Related]
16. Induced pluripotent stem cells generated from human adipose-derived stem cells using a non-viral polycistronic plasmid in feeder-free conditions. Qu X; Liu T; Song K; Li X; Ge D PLoS One; 2012; 7(10):e48161. PubMed ID: 23110200 [TBL] [Abstract][Full Text] [Related]
17. Enhanced human somatic cell reprogramming efficiency by fusion of the MYC transactivation domain and OCT4. Wang L; Huang D; Huang C; Yin Y; Vali K; Zhang M; Tang Y Stem Cell Res; 2017 Dec; 25():88-97. PubMed ID: 29125994 [TBL] [Abstract][Full Text] [Related]
18. Generation of Human iPSCs by Protein Reprogramming and Stimulation of TLR3 Signaling. Liu C; Ameen M; Himmati S; Thomas D; Sayed N Methods Mol Biol; 2021; 2239():153-162. PubMed ID: 33226618 [TBL] [Abstract][Full Text] [Related]
19. Cocktail of Chemical Compounds and Recombinant Proteins Robustly Promote the Stemness of Adipose-Derived Stem Cells. Guo Y; Yu Q; Mathew S; Lian R; Xue Y; Cui Z; Li S; Zhu D; Han Y; Zeng Q; Liu S; Chen J Cell Reprogram; 2017 Dec; 19(6):363-371. PubMed ID: 29215942 [TBL] [Abstract][Full Text] [Related]
20. Generation of Human iPSCs by Episomal Reprogramming of Skin Fibroblasts and Peripheral Blood Mononuclear Cells. Febbraro F; Chen M; Denham M Methods Mol Biol; 2021; 2239():135-151. PubMed ID: 33226617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]