BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26424644)

  • 1. Chromatin Structure of Epstein-Barr Virus Latent Episomes.
    Lieberman PM
    Curr Top Microbiol Immunol; 2015; 390(Pt 1):71-102. PubMed ID: 26424644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PARP1 Stabilizes CTCF Binding and Chromatin Structure To Maintain Epstein-Barr Virus Latency Type.
    Lupey-Green LN; Caruso LB; Madzo J; Martin KA; Tan Y; Hulse M; Tempera I
    J Virol; 2018 Sep; 92(18):. PubMed ID: 29976663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HCF1 and OCT2 Cooperate with EBNA1 To Enhance OriP-Dependent Transcription and Episome Maintenance of Latent Epstein-Barr Virus.
    Dheekollu J; Wiedmer A; Sentana-Lledo D; Cassel J; Messick T; Lieberman PM
    J Virol; 2016 Jun; 90(11):5353-5367. PubMed ID: 27009953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epstein-Barr Virus Episome Physically Interacts with Active Regions of the Host Genome in Lymphoblastoid Cells.
    Wang L; Laing J; Yan B; Zhou H; Ke L; Wang C; Narita Y; Zhang Z; Olson MR; Afzali B; Zhao B; Kazemian M
    J Virol; 2020 Nov; 94(24):. PubMed ID: 32999023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The three-dimensional structure of Epstein-Barr virus genome varies by latency type and is regulated by PARP1 enzymatic activity.
    Morgan SM; Tanizawa H; Caruso LB; Hulse M; Kossenkov A; Madzo J; Keith K; Tan Y; Boyle S; Lieberman PM; Tempera I
    Nat Commun; 2022 Jan; 13(1):187. PubMed ID: 35039491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases.
    Niller HH; Wolf H; Minarovits J
    Autoimmunity; 2008 May; 41(4):298-328. PubMed ID: 18432410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines.
    Ding W; Wang C; Narita Y; Wang H; Leong MML; Huang A; Liao Y; Liu X; Okuno Y; Kimura H; Gewurz B; Teng M; Jin S; Sato Y; Zhao B
    J Virol; 2022 Sep; 96(18):e0073922. PubMed ID: 36094314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Efficient CRISPR/Cas9-Mediated Cloning and Functional Characterization of Gastric Cancer-Derived Epstein-Barr Virus Strains.
    Kanda T; Furuse Y; Oshitani H; Kiyono T
    J Virol; 2016 May; 90(9):4383-93. PubMed ID: 26889033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Latent and lytic Epstein-Barr virus replication strategies.
    Tsurumi T; Fujita M; Kudoh A
    Rev Med Virol; 2005; 15(1):3-15. PubMed ID: 15386591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic regulation of EBV persistence and oncogenesis.
    Tempera I; Lieberman PM
    Semin Cancer Biol; 2014 Jun; 26():22-9. PubMed ID: 24468737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EBV-Encoded Latent Genes.
    Kanda T
    Adv Exp Med Biol; 2018; 1045():377-394. PubMed ID: 29896676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encyclopedia of EBV-Encoded Lytic Genes: An Update.
    Murata T
    Adv Exp Med Biol; 2018; 1045():395-412. PubMed ID: 29896677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keeping it quiet: chromatin control of gammaherpesvirus latency.
    Lieberman PM
    Nat Rev Microbiol; 2013 Dec; 11(12):863-75. PubMed ID: 24192651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of viral cis elements conferring Kaposi's sarcoma-associated herpesvirus episome partitioning and maintenance.
    Skalsky RL; Hu J; Renne R
    J Virol; 2007 Sep; 81(18):9825-37. PubMed ID: 17626102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic chromatin boundaries delineate a latency control region of Epstein-Barr virus.
    Chau CM; Lieberman PM
    J Virol; 2004 Nov; 78(22):12308-19. PubMed ID: 15507618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step multiplex real-time PCR assay to analyse the latency patterns of Epstein-Barr virus infection.
    Kubota N; Wada K; Ito Y; Shimoyama Y; Nakamura S; Nishiyama Y; Kimura H
    J Virol Methods; 2008 Jan; 147(1):26-36. PubMed ID: 17870188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Epigenetic Life Cycle of Epstein-Barr Virus.
    Hammerschmidt W
    Curr Top Microbiol Immunol; 2015; 390(Pt 1):103-17. PubMed ID: 26424645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human p32: a coactivator for Epstein-Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication.
    Van Scoy S; Watakabe I; Krainer AR; Hearing J
    Virology; 2000 Sep; 275(1):145-57. PubMed ID: 11017796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epstein-Barr Virus Lytic Cycle Reactivation.
    McKenzie J; El-Guindy A
    Curr Top Microbiol Immunol; 2015; 391():237-61. PubMed ID: 26428377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin profiling of Epstein-Barr virus latency control region.
    Day L; Chau CM; Nebozhyn M; Rennekamp AJ; Showe M; Lieberman PM
    J Virol; 2007 Jun; 81(12):6389-401. PubMed ID: 17409162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.