BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 26424880)

  • 1. Distinct Functional Modules for Discrete and Rhythmic Forelimb Movements in the Mouse Motor Cortex.
    Hira R; Terada S; Kondo M; Matsuzaki M
    J Neurosci; 2015 Sep; 35(39):13311-22. PubMed ID: 26424880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arm movements induced by noninvasive optogenetic stimulation of the motor cortex in the common marmoset.
    Ebina T; Obara K; Watakabe A; Masamizu Y; Terada SI; Matoba R; Takaji M; Hatanaka N; Nambu A; Mizukami H; Yamamori T; Matsuzaki M
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22844-22850. PubMed ID: 31636197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ipsilateral-Dominant Control of Limb Movements in Rodent Posterior Parietal Cortex.
    Soma S; Yoshida J; Kato S; Takahashi Y; Nonomura S; Sugimura YK; Ríos A; Kawabata M; Kobayashi K; Kato F; Sakai Y; Isomura Y
    J Neurosci; 2019 Jan; 39(3):485-502. PubMed ID: 30478035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct Laterality in Forelimb-Movement Representations of Rat Primary and Secondary Motor Cortical Neurons with Intratelencephalic and Pyramidal Tract Projections.
    Soma S; Saiki A; Yoshida J; Ríos A; Kawabata M; Sakai Y; Isomura Y
    J Neurosci; 2017 Nov; 37(45):10904-10916. PubMed ID: 28972128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale all-optical dissection of motor cortex connectivity shows a segregated organization of mouse forelimb representations.
    Resta F; Montagni E; de Vito G; Scaglione A; Allegra Mascaro AL; Pavone FS
    Cell Rep; 2022 Nov; 41(6):111627. PubMed ID: 36351410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HCN channels segregate stimulation-evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents.
    Boychuk JA; Farrell JS; Palmer LA; Singleton AC; Pittman QJ; Teskey GC
    J Physiol; 2017 Jan; 595(1):247-263. PubMed ID: 27568501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography.
    Harrison TC; Ayling OG; Murphy TH
    Neuron; 2012 Apr; 74(2):397-409. PubMed ID: 22542191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forelimb movements evoked by optogenetic stimulation of the macaque motor cortex.
    Watanabe H; Sano H; Chiken S; Kobayashi K; Fukata Y; Fukata M; Mushiake H; Nambu A
    Nat Commun; 2020 Jun; 11(1):3253. PubMed ID: 32591505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus.
    Low AYT; Thanawalla AR; Yip AKK; Kim J; Wong KLL; Tantra M; Augustine GJ; Chen AI
    Cell Rep; 2018 Feb; 22(9):2322-2333. PubMed ID: 29490269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible Deactivation of Motor Cortex Reveals Functional Connectivity with Posterior Parietal Cortex in the Prosimian Galago (Otolemur garnettii).
    Cooke DF; Stepniewska I; Miller DJ; Kaas JH; Krubitzer L
    J Neurosci; 2015 Oct; 35(42):14406-22. PubMed ID: 26490876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Descending pathways eliciting forelimb stepping in the lateral funiculus: experimental studies with stimulation and lesion of the cervical cord in decerebrate cats.
    Yamaguchi T
    Brain Res; 1986 Jul; 379(1):125-36. PubMed ID: 3742207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas.
    Hira R; Ohkubo F; Tanaka YR; Masamizu Y; Augustine GJ; Kasai H; Matsuzaki M
    Front Neural Circuits; 2013; 7():55. PubMed ID: 23554588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex movement topography and extrinsic space representation in the rat forelimb motor cortex as defined by long-duration intracortical microstimulation.
    Bonazzi L; Viaro R; Lodi E; Canto R; Bonifazzi C; Franchi G
    J Neurosci; 2013 Jan; 33(5):2097-107. PubMed ID: 23365246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that distinct human primary motor cortex circuits control discrete and rhythmic movements.
    Wiegel P; Kurz A; Leukel C
    J Physiol; 2020 Mar; 598(6):1235-1251. PubMed ID: 32057108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in electrical thresholds for evoking movements from the cat cerebral cortex following lesions of the sensori-motor area.
    Ring A; Rajandran H; Harvey A; Ghosh S
    Somatosens Mot Res; 2004 Jun; 21(2):117-36. PubMed ID: 15370092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and plasticity of complex movement representations.
    Singleton AC; Brown AR; Teskey GC
    J Neurophysiol; 2021 Feb; 125(2):628-637. PubMed ID: 33471611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer 5 Intratelencephalic Neurons in the Motor Cortex Stably Encode Skilled Movement.
    Shinotsuka T; Tanaka YR; Terada SI; Hatano N; Matsuzaki M
    J Neurosci; 2023 Oct; 43(43):7130-7148. PubMed ID: 37699714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disengagement of Motor Cortex during Long-Term Learning Tracks the Performance Level of Learned Movements.
    Hwang EJ; Dahlen JE; Mukundan M; Komiyama T
    J Neurosci; 2021 Aug; 41(33):7029-7047. PubMed ID: 34244359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic plasticity of the interpositorubral pathway functionally related to forelimb flexion movements.
    Pananceau M; Rispal-Padel L; Meftah EM
    J Neurophysiol; 1996 Jun; 75(6):2542-61. PubMed ID: 8793763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement representation in the dorsal and ventral premotor areas of owl monkeys: a microstimulation study.
    Preuss TM; Stepniewska I; Kaas JH
    J Comp Neurol; 1996 Aug; 371(4):649-76. PubMed ID: 8841916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.