BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 26424884)

  • 1. Motor Cortex Activity Organizes the Developing Rubrospinal System.
    Williams PT; Martin JH
    J Neurosci; 2015 Sep; 35(39):13363-74. PubMed ID: 26424884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal maturation of the red nucleus motor map depends on rubrospinal connections with forelimb motor pools.
    Williams PT; Kim S; Martin JH
    J Neurosci; 2014 Mar; 34(12):4432-41. PubMed ID: 24647962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade.
    Salimi I; Friel KM; Martin JH
    J Neurosci; 2008 Jul; 28(29):7426-34. PubMed ID: 18632946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-dependent plasticity improves M1 motor representation and corticospinal tract connectivity.
    Chakrabarty S; Friel KM; Martin JH
    J Neurophysiol; 2009 Mar; 101(3):1283-93. PubMed ID: 19091920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can the period of postnatal codevelopment of the rubrospinal and corticospinal systems provide new insights into refinement of limb movement?
    Bertucco M; Dayanidhi S
    J Neurophysiol; 2015 Feb; 113(3):681-3. PubMed ID: 24966297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red nucleus and motor cortex: parallel motor systems for the initiation and control of skilled movement.
    Martin JH; Ghez C
    Behav Brain Res; 1988; 28(1-2):217-23. PubMed ID: 3382515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilateral activity-dependent interactions in the developing corticospinal system.
    Friel KM; Martin JH
    J Neurosci; 2007 Oct; 27(41):11083-90. PubMed ID: 17928450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postnatal development of a segmental switch enables corticospinal tract transmission to spinal forelimb motor circuits.
    Chakrabarty S; Martin JH
    J Neurosci; 2010 Feb; 30(6):2277-88. PubMed ID: 20147554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection.
    Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM
    Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal development of differential projections from the caudal and rostral motor cortex subregions.
    Li Q; Martin JH
    Exp Brain Res; 2000 Sep; 134(2):187-98. PubMed ID: 11037285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System.
    Gennaro M; Mattiello A; Mazziotti R; Antonelli C; Gherardini L; Guzzetta A; Berardi N; Cioni G; Pizzorusso T
    Front Neural Circuits; 2017; 11():47. PubMed ID: 28706475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats.
    Kanagal SG; Muir GD
    Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impairments in prehension produced by early postnatal sensory motor cortex activity blockade.
    Martin JH; Donarummo L; Hacking A
    J Neurophysiol; 2000 Feb; 83(2):895-906. PubMed ID: 10669503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of sensory-motor cortex activity in postnatal development of corticospinal axon terminals in the cat.
    Friel KM; Martin JH
    J Comp Neurol; 2005 Apr; 485(1):43-56. PubMed ID: 15776437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity- and use-dependent plasticity of the developing corticospinal system.
    Martin JH; Friel KM; Salimi I; Chakrabarty S
    Neurosci Biobehav Rev; 2007; 31(8):1125-35. PubMed ID: 17599407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological actions of the rubrospinal tract in the anaesthetised rat.
    Al-Izki S; Kirkwood PA; Lemon RN; EnrĂ­quez Denton M
    Exp Neurol; 2008 Jul; 212(1):118-31. PubMed ID: 18501352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential activity-dependent development of corticospinal control of movement and final limb position during visually guided locomotion.
    Friel KM; Drew T; Martin JH
    J Neurophysiol; 2007 May; 97(5):3396-406. PubMed ID: 17376849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor system plasticity after unilateral injury in the developing brain.
    Williams PTJA; Jiang YQ; Martin JH
    Dev Med Child Neurol; 2017 Dec; 59(12):1224-1229. PubMed ID: 28972274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.