These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 26425384)
1. THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN. Jiang H; Liu F; Meerschaert MM; McGough RJ Electron J Math Anal Appl; 2013 Jan; 1(1):55-66. PubMed ID: 26425384 [TBL] [Abstract][Full Text] [Related]
2. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION. Liu F; Meerschaert MM; McGough RJ; Zhuang P; Liu Q Fract Calc Appl Anal; 2013 Mar; 16(1):9-25. PubMed ID: 23772179 [TBL] [Abstract][Full Text] [Related]
3. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography. Holm S; Näsholm SP Ultrasound Med Biol; 2014 Apr; 40(4):695-703. PubMed ID: 24433745 [TBL] [Abstract][Full Text] [Related]
9. Solitary wave solutions to some nonlinear fractional evolution equations in mathematical physics. Ali HMS; Habib MA; Miah MM; Akbar MA Heliyon; 2020 Apr; 6(4):e03727. PubMed ID: 32322721 [TBL] [Abstract][Full Text] [Related]
10. A unifying fractional wave equation for compressional and shear waves. Holm S; Sinkus R J Acoust Soc Am; 2010 Jan; 127(1):542-59. PubMed ID: 20058999 [TBL] [Abstract][Full Text] [Related]
11. Estimation of shear modulus in media with power law characteristics. Zhang W; Holm S Ultrasonics; 2016 Jan; 64():170-6. PubMed ID: 26385841 [TBL] [Abstract][Full Text] [Related]
12. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. Treeby BE; Cox BT J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722 [TBL] [Abstract][Full Text] [Related]
13. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. Chen W; Holm S J Acoust Soc Am; 2004 Apr; 115(4):1424-30. PubMed ID: 15101619 [TBL] [Abstract][Full Text] [Related]
14. Frequency-domain wave equation and its time-domain solutions in attenuating media. Sushilov NV; Cobbold RS J Acoust Soc Am; 2004 Apr; 115(4):1431-6. PubMed ID: 15101620 [TBL] [Abstract][Full Text] [Related]
15. Analytical time-domain Green's functions for power-law media. Kelly JF; McGough RJ; Meerschaert MM J Acoust Soc Am; 2008 Nov; 124(5):2861-72. PubMed ID: 19045774 [TBL] [Abstract][Full Text] [Related]
16. Fractional biharmonic operator equation model for arbitrary frequency-dependent scattering attenuation in acoustic wave propagation. Chen W; Fang J; Pang G; Holm S J Acoust Soc Am; 2017 Jan; 141(1):244. PubMed ID: 28147566 [TBL] [Abstract][Full Text] [Related]
17. Approximate analytical time-domain Green's functions for the Caputo fractional wave equation. Kelly JF; McGough RJ J Acoust Soc Am; 2016 Aug; 140(2):1039. PubMed ID: 27586735 [TBL] [Abstract][Full Text] [Related]
18. A hybrid fractional optimal control for a novel Coronavirus (2019-nCov) mathematical model. Sweilam NH; Al-Mekhlafi SM; Baleanu D J Adv Res; 2021 Sep; 32():149-160. PubMed ID: 32864171 [TBL] [Abstract][Full Text] [Related]
19. Modified Szabo's wave equation models for lossy media obeying frequency power law. Chen W; Holm S J Acoust Soc Am; 2003 Nov; 114(5):2570-4. PubMed ID: 14649993 [TBL] [Abstract][Full Text] [Related]
20. Analytical Solutions of Fractional-Order Heat and Wave Equations by the Natural Transform Decomposition Method. Khan H; Shah R; Kumam P; Arif M Entropy (Basel); 2019 Jun; 21(6):. PubMed ID: 33267311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]