BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26425552)

  • 1. A Bayesian Outbreak Detection Method for Influenza-Like Illness.
    García YE; Christen JA; Capistrán MA
    Biomed Res Int; 2015; 2015():751738. PubMed ID: 26425552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian Markov switching models for the early detection of influenza epidemics.
    Martínez-Beneito MA; Conesa D; López-Quílez A; López-Maside A
    Stat Med; 2008 Sep; 27(22):4455-68. PubMed ID: 18618414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FluHMM: A simple and flexible Bayesian algorithm for sentinel influenza surveillance and outbreak detection.
    Lytras T; Gkolfinopoulou K; Bonovas S; Nunes B
    Stat Methods Med Res; 2019 Jun; 28(6):1826-1840. PubMed ID: 29869565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian hierarchical Poisson models with a hidden Markov structure for the detection of influenza epidemic outbreaks.
    Conesa D; Martínez-Beneito MA; Amorós R; López-Quílez A
    Stat Methods Med Res; 2015 Apr; 24(2):206-23. PubMed ID: 21873301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian spatio-temporal approach for real-time detection of disease outbreaks: a case study.
    Zou J; Karr AF; Datta G; Lynch J; Grannis S
    BMC Med Inform Decis Mak; 2014 Dec; 14():108. PubMed ID: 25476843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian prediction of an epidemic curve.
    Jiang X; Wallstrom G; Cooper GF; Wagner MM
    J Biomed Inform; 2009 Feb; 42(1):90-9. PubMed ID: 18593605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-population model accounting for the different patterns observed in the log-log plot of the cumulative numbers of those infected and killed in the early phase of the 2009 H1N1 pandemic in contrast to the one-population model accounting for the 1918-1919 pandemic in San Francisco.
    Yoshikura H
    Jpn J Infect Dis; 2009 Nov; 62(6):482-4. PubMed ID: 19934547
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparative estimation of the reproduction number for pandemic influenza from daily case notification data.
    Chowell G; Nishiura H; Bettencourt LM
    J R Soc Interface; 2007 Feb; 4(12):155-66. PubMed ID: 17254982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new statistical early outbreak detection method for biosurveillance and performance comparisons.
    Cengiz Ü; Karahasan M
    Stat Med; 2019 Nov; 38(27):5236-5258. PubMed ID: 31588592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting routinely collected severe case data to monitor and predict influenza outbreaks.
    Corbella A; Zhang XS; Birrell PJ; Boddington N; Pebody RG; Presanis AM; De Angelis D
    BMC Public Health; 2018 Jun; 18(1):790. PubMed ID: 29940907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian inference for stochastic multitype epidemics in structured populations using sample data.
    O'Neill PD
    Biostatistics; 2009 Oct; 10(4):779-91. PubMed ID: 19648227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spatio-temporal absorbing state model for disease and syndromic surveillance.
    Heaton MJ; Banks DL; Zou J; Karr AF; Datta G; Lynch J; Vera F
    Stat Med; 2012 Aug; 31(19):2123-36. PubMed ID: 22388709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new prior for bayesian anomaly detection: application to biosurveillance.
    Shen Y; Cooper GF
    Methods Inf Med; 2010; 49(1):44-53. PubMed ID: 20027381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust outbreak surveillance of epidemics in Sweden.
    Frisén M; Andersson E; Schiöler L
    Stat Med; 2009 Feb; 28(3):476-93. PubMed ID: 19012277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian system to detect and characterize overlapping outbreaks.
    Aronis JM; Millett NE; Wagner MM; Tsui F; Ye Y; Ferraro JP; Haug PJ; Gesteland PH; Cooper GF
    J Biomed Inform; 2017 Sep; 73():171-181. PubMed ID: 28797710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid hierarchical Bayesian model for spatiotemporal surveillance data.
    Zou J; Zhang Z; Yan H
    Stat Med; 2018 Dec; 37(28):4216-4233. PubMed ID: 30039588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical statistical modelling of influenza epidemic dynamics in space and time.
    Mugglin AS; Cressie N; Gemmell I
    Stat Med; 2002 Sep; 21(18):2703-21. PubMed ID: 12228886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Variations in Event-Based Surveillance for Disease Outbreak Detection: Time Series Analysis.
    Ganser I; Thiébaut R; Buckeridge DL
    JMIR Public Health Surveill; 2022 Oct; 8(10):e36211. PubMed ID: 36315218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian hierarchical modeling of the dynamics of spatio-temporal influenza season outbreaks.
    Lawson AB; Song HR
    Spat Spatiotemporal Epidemiol; 2010 Jul; 1(2-3):187-95. PubMed ID: 22749473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time surveillance for abnormal events: the case of influenza outbreaks.
    Rao Y; McCabe B
    Stat Med; 2016 Jun; 35(13):2206-20. PubMed ID: 26782751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.