These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26425963)

  • 1. Generation of Hydrogen by Visible Light-Induced Water Splitting with the Use of Semiconductors and Dyes.
    Rao CN; Lingampalli SR
    Small; 2016 Jan; 12(1):16-23. PubMed ID: 26425963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar photochemical and thermochemical splitting of water.
    Rao CN; Lingampalli SR; Dey S; Roy A
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2061):. PubMed ID: 26755752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron based photoanodes for solar fuel production.
    Bassi PS; Gurudayal ; Wong LH; Barber J
    Phys Chem Chem Phys; 2014 Jun; 16(24):11834-42. PubMed ID: 24469680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light.
    Wang X; Maeda K; Chen X; Takanabe K; Domen K; Hou Y; Fu X; Antonietti M
    J Am Chem Soc; 2009 Feb; 131(5):1680-1. PubMed ID: 19191697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.
    Zou Z; Ye J; Sayama K; Arakawa H
    Nature; 2001 Dec; 414(6864):625-7. PubMed ID: 11740556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial photosynthesis: from molecular catalysts for light-driven water splitting to photoelectrochemical cells.
    Andreiadis ES; Chavarot-Kerlidou M; Fontecave M; Artero V
    Photochem Photobiol; 2011; 87(5):946-64. PubMed ID: 21740444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting.
    Reza Gholipour M; Dinh CT; Béland F; Do TO
    Nanoscale; 2015 May; 7(18):8187-208. PubMed ID: 25804291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Photosynthesis of Alcohols by Multi-Functionalized Semiconductor Photocathodes.
    Zhang Y; Han B; Xu Y; Zhao D; Jia Y; Nie R; Zhu Z; Chen F; Wang J; Jing H
    ChemSusChem; 2017 Apr; 10(8):1742-1748. PubMed ID: 28294566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic H
    Huang JF; Lei Y; Luo T; Liu JM
    ChemSusChem; 2020 Nov; 13(22):5863-5895. PubMed ID: 32897637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-driven water oxidation for solar fuels.
    Young KJ; Martini LA; Milot RL; Snoeberger RC; Batista VS; Schmuttenmaer CA; Crabtree RH; Brudvig GW
    Coord Chem Rev; 2012 Nov; 256(21-22):2503-2520. PubMed ID: 25364029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust dye-sensitized overall water splitting system with two-step photoexcitation of coumarin dyes and metal oxide semiconductors.
    Abe R; Shinmei K; Hara K; Ohtani B
    Chem Commun (Camb); 2009 Jun; (24):3577-9. PubMed ID: 19521613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial photosynthesis challenges: water oxidation at nanostructured interfaces.
    Carraro M; Sartorel A; Toma FM; Puntoriero F; Scandola F; Campagna S; Prato M; Bonchio M
    Top Curr Chem; 2011; 303():121-50. PubMed ID: 21547686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.