These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26425963)

  • 41. Surface Plasmon-Assisted Solar Energy Conversion.
    Dodekatos G; Schünemann S; Tüysüz H
    Top Curr Chem; 2016; 371():215-52. PubMed ID: 26092694
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of non-oxide semiconductors as light harvesting materials in photocatalytic and photoelectrochemical water splitting.
    Takata T; Domen K
    Dalton Trans; 2017 Aug; 46(32):10529-10544. PubMed ID: 28589988
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Artificial photosynthesis for sustainable fuel and chemical production.
    Kim D; Sakimoto KK; Hong D; Yang P
    Angew Chem Int Ed Engl; 2015 Mar; 54(11):3259-66. PubMed ID: 25594933
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Facile synthesis and enhanced visible-light photocatalysis of graphitic carbon nitride composite semiconductors.
    Li H; Liu Y; Gao X; Fu C; Wang X
    ChemSusChem; 2015 Apr; 8(7):1189-96. PubMed ID: 25727782
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Artificial Molecular Photosynthetic Systems: Towards Efficient Photoelectrochemical Water Oxidation.
    Yamamoto M; Tanaka K
    Chempluschem; 2016 Oct; 81(10):1028-1044. PubMed ID: 31964077
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells.
    Brennaman MK; Dillon RJ; Alibabaei L; Gish MK; Dares CJ; Ashford DL; House RL; Meyer GJ; Papanikolas JM; Meyer TJ
    J Am Chem Soc; 2016 Oct; 138(40):13085-13102. PubMed ID: 27654634
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal Semiconductor Heterostructures for Photocatalytic Conversion of Light Energy.
    Dutta SK; Mehetor SK; Pradhan N
    J Phys Chem Lett; 2015 Mar; 6(6):936-44. PubMed ID: 26262849
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Splitting water with cobalt.
    Artero V; Chavarot-Kerlidou M; Fontecave M
    Angew Chem Int Ed Engl; 2011 Aug; 50(32):7238-66. PubMed ID: 21748828
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Co(II)-Ru(II) dyad relevant to light-driven water oxidation catalysis.
    López AM; Natali M; Pizzolato E; Chiorboli C; Bonchio M; Sartorel A; Scandola F
    Phys Chem Chem Phys; 2014 Jun; 16(24):12000-7. PubMed ID: 24664104
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.
    Duan L; Wang L; Li F; Li F; Sun L
    Acc Chem Res; 2015 Jul; 48(7):2084-96. PubMed ID: 26131964
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Artificial photosynthesis: semiconductor photocatalytic fixation of CO2 to afford higher organic compounds.
    Hoffmann MR; Moss JA; Baum MM
    Dalton Trans; 2011 May; 40(19):5151-8. PubMed ID: 21373667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures.
    Chen HM; Chen CK; Chen CJ; Cheng LC; Wu PC; Cheng BH; Ho YZ; Tseng ML; Hsu YY; Chan TS; Lee JF; Liu RS; Tsai DP
    ACS Nano; 2012 Aug; 6(8):7362-72. PubMed ID: 22849358
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tailoring photocatalytic nanostructures for sustainable hydrogen production.
    Cargnello M; Diroll BT
    Nanoscale; 2014 Jan; 6(1):97-105. PubMed ID: 24240274
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway.
    Liu J; Liu Y; Liu N; Han Y; Zhang X; Huang H; Lifshitz Y; Lee ST; Zhong J; Kang Z
    Science; 2015 Feb; 347(6225):970-4. PubMed ID: 25722405
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Light induced oxidative water splitting in photosynthesis: energetics, kinetics and mechanism.
    Renger G
    J Photochem Photobiol B; 2011; 104(1-2):35-43. PubMed ID: 21454089
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Artificial Photosynthesis: Hybrid Systems.
    Ni Y; Hollmann F
    Adv Biochem Eng Biotechnol; 2016; 158():137-158. PubMed ID: 26987806
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi-electron oxygen reduction by a hybrid visible-light-photocatalyst consisting of metal-oxide semiconductor and self-assembled biomimetic complex.
    Naya S; Niwa T; Negishi R; Kobayashi H; Tada H
    Angew Chem Int Ed Engl; 2014 Dec; 53(50):13894-7. PubMed ID: 25287731
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biological components and bioelectronic interfaces of water splitting photoelectrodes for solar hydrogen production.
    Braun A; Boudoire F; Bora DK; Faccio G; Hu Y; Kroll A; Mun BS; Wilson ST
    Chemistry; 2015 Mar; 21(11):4188-99. PubMed ID: 25504590
    [TBL] [Abstract][Full Text] [Related]  

  • 59. N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures.
    Lavorato C; Primo A; Molinari R; Garcia H
    Chemistry; 2014 Jan; 20(1):187-94. PubMed ID: 24327304
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photosystem II: the water-splitting enzyme of photosynthesis.
    Barber J
    Cold Spring Harb Symp Quant Biol; 2012; 77():295-307. PubMed ID: 23234808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.