These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26426085)

  • 1. Boosting the sensitivity of Nd(3+)-based luminescent nanothermometers.
    Balabhadra S; Debasu ML; Brites CD; Nunes LA; Malta OL; Rocha J; Bettinelli M; Carlos LD
    Nanoscale; 2015 Nov; 7(41):17261-7. PubMed ID: 26426085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd(3+) to Yb(3+) energy transfer.
    Marciniak Ł; Bednarkiewicz A; Stefanski M; Tomala R; Hreniak D; Strek W
    Phys Chem Chem Phys; 2015 Oct; 17(37):24315-21. PubMed ID: 26327196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling in Vivo Subcutaneous Thermal Dynamics by Infrared Luminescent Nanothermometers.
    Ximendes EC; Santos WQ; Rocha U; Kagola UK; Sanz-Rodríguez F; Fernández N; Gouveia-Neto Ada S; Bravo D; Domingo AM; del Rosal B; Brites CD; Carlos LD; Jaque D; Jacinto C
    Nano Lett; 2016 Mar; 16(3):1695-703. PubMed ID: 26845418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles.
    Rocha U; Jacinto da Silva C; Ferreira Silva W; Guedes I; Benayas A; Martínez Maestro L; Acosta Elias M; Bovero E; van Veggel FC; García Solé JA; Jaque D
    ACS Nano; 2013 Feb; 7(2):1188-99. PubMed ID: 23311347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratiometric nanothermometer based on an emissive Ln3+-organic framework.
    Cadiau A; Brites CD; Costa PM; Ferreira RA; Rocha J; Carlos LD
    ACS Nano; 2013 Aug; 7(8):7213-8. PubMed ID: 23869817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nd
    Acosta S; Borrero-González LJ; Umek P; Nunes LAO; Guttmann P; Bittencourt C
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window.
    Cerón EN; Ortgies DH; Del Rosal B; Ren F; Benayas A; Vetrone F; Ma D; Sanz-Rodríguez F; Solé JG; Jaque D; Rodríguez EM
    Adv Mater; 2015 Aug; 27(32):4781-7. PubMed ID: 26174612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of highly sensitive YAG:Cr
    Marciniak L; Bednarkiewicz A; Drabik J; Trejgis K; Strek W
    Phys Chem Chem Phys; 2017 Mar; 19(10):7343-7351. PubMed ID: 28239697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nd
    Dantelle G; Matulionyte M; Testemale D; Cantarano A; Ibanez A; Vetrone F
    Phys Chem Chem Phys; 2019 Jun; 21(21):11132-11141. PubMed ID: 31094386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A near infrared luminescent metal-organic framework for temperature sensing in the physiological range.
    Lian X; Zhao D; Cui Y; Yang Y; Qian G
    Chem Commun (Camb); 2015 Dec; 51(100):17676-9. PubMed ID: 26489451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Making Nd
    Suta M; Antić Ž; Ðorđević V; Kuzman S; Dramićanin MD; Meijerink A
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32197319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd³⁺.
    Tian X; Wei X; Chen Y; Duan C; Yin M
    Opt Express; 2014 Dec; 22(24):30333-45. PubMed ID: 25606962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancing neodymium single-band nanothermometry.
    Skripka A; Morinvil A; Matulionyte M; Cheng T; Vetrone F
    Nanoscale; 2019 Jun; 11(23):11322-11330. PubMed ID: 31165841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-Dependent Luminescence of Nd
    Wetzl C; Renero-Lecuna C; Cardo L; Liz-Marzán LM; Prato M
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35484-35493. PubMed ID: 38934218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature Sensing of Deep Abdominal Region in Mice by Using Over-1000 nm Near-Infrared Luminescence of Rare-Earth-Doped NaYF
    Sekiyama S; Umezawa M; Kuraoka S; Ube T; Kamimura M; Soga K
    Sci Rep; 2018 Nov; 8(1):16979. PubMed ID: 30451921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ratiometric nanothermometer in vivo based on triplet sensitized upconversion.
    Xu M; Zou X; Su Q; Yuan W; Cao C; Wang Q; Zhu X; Feng W; Li F
    Nat Commun; 2018 Jul; 9(1):2698. PubMed ID: 30002372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent nanothermometers for intracellular thermal sensing.
    Jaque D; Rosal BD; Rodríguez EM; Maestro LM; Haro-González P; Solé JG
    Nanomedicine (Lond); 2014 May; 9(7):1047-62. PubMed ID: 24978463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lanthanide doped luminescence nanothermometers in the biological windows: strategies and applications.
    Nexha A; Carvajal JJ; Pujol MC; Díaz F; Aguiló M
    Nanoscale; 2021 May; 13(17):7913-7987. PubMed ID: 33899861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NIR luminescence thermometers based on Yb-Nd coordination compounds for the 83-393 K temperature range.
    Orlova AV; Kozhevnikova VY; Goloveshkin AS; Lepnev LS; Utochnikova VV
    Dalton Trans; 2022 Apr; 51(14):5419-5425. PubMed ID: 35333273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LiAl
    Kniec K; Tikhomirov M; Pozniak B; Ledwa K; Marciniak L
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 31978960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.