These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 26426145)
1. Compartmentalization of Incompatible Catalytic Transformations for Tandem Catalysis. Lu J; Dimroth J; Weck M J Am Chem Soc; 2015 Oct; 137(40):12984-9. PubMed ID: 26426145 [TBL] [Abstract][Full Text] [Related]
2. Shell Cross-Linked Micelles as Nanoreactors for Enantioselective Three-Step Tandem Catalysis. Kuepfert M; Cohen AE; Cullen O; Weck M Chemistry; 2018 Dec; 24(70):18648-18652. PubMed ID: 30276903 [TBL] [Abstract][Full Text] [Related]
3. Compartmentalization and Photoregulating Pathways for Incompatible Tandem Catalysis. Qu P; Kuepfert M; Hashmi M; Weck M J Am Chem Soc; 2021 Mar; 143(12):4705-4713. PubMed ID: 33724020 [TBL] [Abstract][Full Text] [Related]
4. Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept, and beyond. Chen DF; Han ZY; Zhou XL; Gong LZ Acc Chem Res; 2014 Aug; 47(8):2365-77. PubMed ID: 24911184 [TBL] [Abstract][Full Text] [Related]
5. Self-assembled micelles of biodegradable triblock copolymers based on poly(ethyl ethylene phosphate) and poly(-caprolactone) as drug carriers. Wang YC; Tang LY; Sun TM; Li CH; Xiong MH; Wang J Biomacromolecules; 2008 Jan; 9(1):388-95. PubMed ID: 18081252 [TBL] [Abstract][Full Text] [Related]
6. Design of reversibly core cross-linked micelles sensitive to reductive environment. Cajot S; Lautram N; Passirani C; Jérôme C J Control Release; 2011 May; 152(1):30-6. PubMed ID: 21457741 [TBL] [Abstract][Full Text] [Related]
7. Wolf-Lamb-type Catalysis in One Pot Using Electrospun Polymeric Catalyst Membranes. Pretscher MO; Gekle S; Agarwal S Macromol Rapid Commun; 2019 Jul; 40(14):e1900148. PubMed ID: 31070820 [TBL] [Abstract][Full Text] [Related]
8. One-pot multi-component asymmetric cascade reactions catalyzed by soluble star polymers with highly branched non-interpenetrating catalytic cores. Chi Y; Scroggins ST; Fréchet JM J Am Chem Soc; 2008 May; 130(20):6322-3. PubMed ID: 18433122 [TBL] [Abstract][Full Text] [Related]
9. Multicompartment Polymeric Nanoreactors for Non-Orthogonal Cascade Catalysis. Womble CT; Kuepfert M; Weck M Macromol Rapid Commun; 2019 Jan; 40(1):e1800580. PubMed ID: 30368964 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and self-assembly of thermoresponsive amphiphilic biodegradable polypeptide/poly(ethyl ethylene phosphate) block copolymers. Wu Q; Zhou D; Kang R; Tang X; Yang Q; Song X; Zhang G Chem Asian J; 2014 Oct; 9(10):2850-8. PubMed ID: 25145712 [TBL] [Abstract][Full Text] [Related]
11. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101 [TBL] [Abstract][Full Text] [Related]
12. Micellar catalysis: Polymer bound palladium catalyst for carbon-carbon coupling reactions in water. Sengoden M; Bhat GA; Rutledge RJ; Rashid S; Dar AA; Darensbourg DJ Proc Natl Acad Sci U S A; 2023 Nov; 120(46):e2312907120. PubMed ID: 37922331 [TBL] [Abstract][Full Text] [Related]
13. Tandem oxidative processes catalyzed by polymer-incarcerated multimetallic nanoclusters with molecular oxygen. Miyamura H; Kobayashi S Acc Chem Res; 2014 Apr; 47(4):1054-66. PubMed ID: 24661043 [TBL] [Abstract][Full Text] [Related]
14. siRNA delivery from triblock copolymer micelles with spatially-ordered compartments of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core. Kim HJ; Miyata K; Nomoto T; Zheng M; Kim A; Liu X; Cabral H; Christie RJ; Nishiyama N; Kataoka K Biomaterials; 2014 May; 35(15):4548-56. PubMed ID: 24613051 [TBL] [Abstract][Full Text] [Related]
15. Asymmetric hydrogenation in the core of dendrimers. He YM; Feng Y; Fan QH Acc Chem Res; 2014 Oct; 47(10):2894-906. PubMed ID: 25247446 [TBL] [Abstract][Full Text] [Related]
16. Poly(2-methyl-2-oxazoline)-b-poly(tetrahydrofuran)-b-poly(2-methyl-2-oxazoline) amphiphilic triblock copolymers: synthesis, physicochemical characterizations, and hydrosolubilizing properties. Rasolonjatovo B; Gomez JP; Même W; Gonçalves C; Huin C; Bennevault-Celton V; Le Gall T; Montier T; Lehn P; Cheradame H; Midoux P; Guégan P Biomacromolecules; 2015 Mar; 16(3):748-56. PubMed ID: 25517924 [TBL] [Abstract][Full Text] [Related]
18. Reduction-responsive core-shell-corona micelles based on triblock copolymers: novel synthetic strategy, characterization, and application as a tumor microenvironment-responsive drug delivery system. Zhao X; Liu P ACS Appl Mater Interfaces; 2015 Jan; 7(1):166-74. PubMed ID: 25394962 [TBL] [Abstract][Full Text] [Related]
19. Bridging the gap between transition metal- and bio-catalysis via aqueous micellar catalysis. Cortes-Clerget M; Akporji N; Zhou J; Gao F; Guo P; Parmentier M; Gallou F; Berthon JY; Lipshutz BH Nat Commun; 2019 May; 10(1):2169. PubMed ID: 31092815 [TBL] [Abstract][Full Text] [Related]
20. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Wulff G; Liu J Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]