These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 26426418)

  • 21. Dynein and kinesin share an overlapping microtubule-binding site.
    Mizuno N; Toba S; Edamatsu M; Watai-Nishii J; Hirokawa N; Toyoshima YY; Kikkawa M
    EMBO J; 2004 Jul; 23(13):2459-67. PubMed ID: 15175652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Loading direction regulates the affinity of ADP for kinesin.
    Uemura S; Ishiwata S
    Nat Struct Biol; 2003 Apr; 10(4):308-11. PubMed ID: 12640444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatiotemporal control of kinesin motor protein by photoswitches enabling selective single microtubule regulations.
    Kumar KR; Amrutha AS; Tamaoki N
    Lab Chip; 2016 Nov; 16(24):4702-4709. PubMed ID: 27785507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microtubule organization by kinesin motors and microtubule crosslinking protein MAP65.
    Pringle J; Muthukumar A; Tan A; Crankshaw L; Conway L; Ross JL
    J Phys Condens Matter; 2013 Sep; 25(37):374103. PubMed ID: 23945219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A continuous network of lipid nanotubes fabricated from the gliding motility of kinesin powered microtubule filaments.
    Bouxsein NF; Carroll-Portillo A; Bachand M; Sasaki DY; Bachand GD
    Langmuir; 2013 Mar; 29(9):2992-9. PubMed ID: 23391254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isomorphic coalescence of aster cores formed in vitro from microtubules and kinesin motors.
    Kim K; Sikora A; Nakazawa H; Umetsu M; Hwang W; Teizer W
    Phys Biol; 2016 Sep; 13(5):056002. PubMed ID: 27652512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microtubules with altered assembly kinetics have a decreased rate of kinesin-based transport.
    Redenbach DM; Richburg JH; Boekelheide K
    Cell Motil Cytoskeleton; 1994; 27(1):79-87. PubMed ID: 8194112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport of beads by several kinesin motors.
    Beeg J; Klumpp S; Dimova R; Gracià RS; Unger E; Lipowsky R
    Biophys J; 2008 Jan; 94(2):532-41. PubMed ID: 17872957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studying kinesin motors by optical 3D-nanometry in gliding motility assays.
    Nitzsche B; Bormuth V; Bräuer C; Howard J; Ionov L; Kerssemakers J; Korten T; Leduc C; Ruhnow F; Diez S
    Methods Cell Biol; 2010; 95():247-71. PubMed ID: 20466139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting the stochastic guiding of kinesin-driven microtubules in microfabricated tracks: a statistical-mechanics-based modeling approach.
    Lin CT; Meyhofer E; Kurabayashi K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011919. PubMed ID: 20365411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification of functionalized quantum dots.
    Courty S; Dahan M
    Cold Spring Harb Protoc; 2013 Oct; 2013(10):928-9. PubMed ID: 24086059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Label-free Imaging of Microtubules with Sub-nm Precision Using Interferometric Scattering Microscopy.
    Andrecka J; Ortega Arroyo J; Lewis K; Cross RA; Kukura P
    Biophys J; 2016 Jan; 110(1):214-7. PubMed ID: 26745424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colocalization of quantum dots by reactive molecules carried by motor proteins on polarized microtubule arrays.
    Fujimoto K; Kitamura M; Yokokawa M; Kanno I; Kotera H; Yokokawa R
    ACS Nano; 2013 Jan; 7(1):447-55. PubMed ID: 23230973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact-Free Measurement of Microtubule Rotations on Kinesin and Cytoplasmic-Dynein Coated Surfaces.
    Mitra A; Ruhnow F; Nitzsche B; Diez S
    PLoS One; 2015; 10(9):e0136920. PubMed ID: 26368807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loop formation of microtubules during gliding at high density.
    Liu L; Tüzel E; Ross JL
    J Phys Condens Matter; 2011 Sep; 23(37):374104. PubMed ID: 21862840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microtubule bundle formation driven by ATP: the effect of concentrations of kinesin, streptavidin and microtubules.
    Kawamura R; Kakugo A; Osada Y; Gong JP
    Nanotechnology; 2010 Apr; 21(14):145603. PubMed ID: 20215659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments.
    Paxton WF; Bouxsein NF; Henderson IM; Gomez A; Bachand GD
    Nanoscale; 2015 Jul; 7(25):10998-1004. PubMed ID: 25939271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Small and stable peptidic PEGylated quantum dots to target polyhistidine-tagged proteins with controlled stoichiometry.
    Dif A; Boulmedais F; Pinot M; Roullier V; Baudy-Floc'h M; Coquelle FM; Clarke S; Neveu P; Vignaux F; Le Borgne R; Dahan M; Gueroui Z; Marchi-Artzner V
    J Am Chem Soc; 2009 Oct; 131(41):14738-46. PubMed ID: 19788248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated Multi-Peak Tracking Kymography (AMTraK): A Tool to Quantify Sub-Cellular Dynamics with Sub-Pixel Accuracy.
    Chaphalkar AR; Jain K; Gangan MS; Athale CA
    PLoS One; 2016; 11(12):e0167620. PubMed ID: 27992448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Excessive expression of the plant kinesin TBK5 converts cortical and perinuclear microtubules into a radial array emanating from a single focus.
    Goto Y; Asada T
    Plant Cell Physiol; 2007 May; 48(5):753-61. PubMed ID: 17452343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.