BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 26426453)

  • 1. MASCG: Multi-Atlas Segmentation Constrained Graph method for accurate segmentation of hip CT images.
    Chu C; Bai J; Wu X; Zheng G
    Med Image Anal; 2015 Dec; 26(1):173-84. PubMed ID: 26426453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated CT segmentation of diseased hip using hierarchical and conditional statistical shape models.
    Yokota F; Okada T; Takao M; Sugano N; Tada Y; Tomiyama N; Sato Y
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):190-7. PubMed ID: 24579140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure.
    Yokota F; Okada T; Takao M; Sugano N; Tada Y; Sato Y
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):811-8. PubMed ID: 20426186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FACTS: Fully Automatic CT Segmentation of a Hip Joint.
    Chu C; Chen C; Liu L; Zheng G
    Ann Biomed Eng; 2015 May; 43(5):1247-59. PubMed ID: 25366904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An articulated statistical shape model for accurate hip joint segmentation.
    Kainmueller D; Lamecker H; Zachow S; Hege HC
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6345-51. PubMed ID: 19964159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improve accuracy for automatic acetabulum segmentation in CT images.
    Liu H; Zhao J; Dai N; Qian H; Tang Y
    Biomed Mater Eng; 2014; 24(6):3159-77. PubMed ID: 25227025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning.
    Xu Z; Burke RP; Lee CP; Baucom RB; Poulose BK; Abramson RG; Landman BA
    Med Image Anal; 2015 Aug; 24(1):18-27. PubMed ID: 26046403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-parametric iterative model constraint graph min-cut for automatic kidney segmentation.
    Freiman M; Kronman A; Esses SJ; Joskowicz L; Sosna J
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):73-80. PubMed ID: 20879385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atlas-based auto-segmentation of head and neck CT images.
    Han X; Hoogeman MS; Levendag PC; Hibbard LS; Teguh DN; Voet P; Cowen AC; Wolf TK
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):434-41. PubMed ID: 18982634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated segmentation of acetabulum and femoral head from 3-D CT images.
    Zoroofi RA; Sato Y; Sasama T; Nishii T; Sugano N; Yonenobu K; Yoshikawa H; Ochi T; Tamura S
    IEEE Trans Inf Technol Biomed; 2003 Dec; 7(4):329-43. PubMed ID: 15000359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic segmentation of the liver from multi- and single-phase contrast-enhanced CT images.
    Ruskó L; Bekes G; Fidrich M
    Med Image Anal; 2009 Dec; 13(6):871-82. PubMed ID: 19692288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AISLE: an automatic volumetric segmentation method for the study of lung allometry.
    Ren H; Kazanzides P
    Stud Health Technol Inform; 2011; 163():476-8. PubMed ID: 21335842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-automatic segmentation of femur based on harmonic barrier.
    Zou Z; Liao SH; Luo SD; Liu Q; Liu SJ
    Comput Methods Programs Biomed; 2017 May; 143():171-184. PubMed ID: 28391815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atlas-driven lung lobe segmentation in volumetric X-ray CT images.
    Zhang L; Hoffman EA; Reinhardt JM
    IEEE Trans Med Imaging; 2006 Jan; 25(1):1-16. PubMed ID: 16398410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An interactive geometric technique for upper and lower teeth segmentation.
    Le BH; Deng Z; Xia J; Chang YB; Zhou X
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):968-75. PubMed ID: 20426205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.
    Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y
    Med Image Anal; 2015 Dec; 26(1):1-18. PubMed ID: 26277022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data.
    Kang Y; Engelke K; Kalender WA
    IEEE Trans Med Imaging; 2003 May; 22(5):586-98. PubMed ID: 12846428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic model-guided segmentation of the human brain ventricular system from CT images.
    Liu J; Huang S; Ihar V; Ambrosius W; Lee LC; Nowinski WL
    Acad Radiol; 2010 Jun; 17(6):718-26. PubMed ID: 20457415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model.
    Okada T; Shimada R; Sato Y; Hori M; Yokota K; Nakamoto M; Chen YW; Nakamura H; Tamura S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):86-93. PubMed ID: 18051047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.